Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Performance of alternative spatial models in empirical Douglas-fir and simulated datasets

Cappa, Eduardo PabloIcon ; Muñoz, Facundo; Sanchez, Leopoldo
Fecha de publicación: 13/05/2019
Editorial: EDP Sciences
Revista: Annals of Forest Science
ISSN: 1286-4560
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Agrícolas

Resumen

Key message: Based on an empirical dataset originating from the French Douglas-fir breeding program, we showed that the bidimensional autoregressive and the two-dimensional P-spline regression spatial models clearly outperformed the classical block model, in terms of both goodness of fit and predicting ability. In contrast, the differences between both spatial models were relatively small. In general, results from simulated data were well in agreement with those from empirical data. Context: Environmental (and/or non-environmental) global and local spatial trends can lead to biases in the estimation of genetic parameters and the prediction of individual additive genetic effects. Aims: The goal of the present research is to compare the performances of the classical a priori block design (block) and two different a posteriori spatial models: a bidimensional first-order autoregressive process (AR) and a bidimensional P-spline regression (splines). Methods: Data from eight trials of the French Douglas-fir breeding program were analyzed using the block, AR, and splines models, and data from 8640 simulated datasets corresponding to 180 different scenarios were also analyzed using the two a posteriori spatial models. For each real and simulated dataset, we compared the fitted models using several performance metrics. Results: There is a substantial gain in accuracy and precision in switching from classical a priori blocks design to any of the two alternative a posteriori spatial methodologies. However, the differences between AR and splines were relatively small. Simulations, covering a larger though oversimplified hypothetical setting, seemed to support previous empirical findings. Both spatial approaches yielded unbiased estimations of the variance components when they match with the respective simulation data. Conclusion: In practice, both spatial models (i.e., AR and splines) suitably capture spatial variation. It is usually safe to use any of them. The final choice could be driven solely by operational reasons.
Palabras clave: AUTOREGRESSIVE RESIDUAL , FOREST GENETICS TRIALS , GLOBAL AND LOCAL SPATIAL TRENDS , TWO-DIMENSIONAL P-SPLINES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.500Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/130663
URL: https://link.springer.com/article/10.1007/s13595-019-0836-9
DOI: http://dx.doi.org/10.1007/s13595-019-0836-9
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Cappa, Eduardo Pablo; Muñoz, Facundo; Sanchez, Leopoldo; Performance of alternative spatial models in empirical Douglas-fir and simulated datasets; EDP Sciences; Annals of Forest Science; 76; 53; 13-5-2019; 1-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES