Evento
Computing the Determinant of the Distance Matrix of a Bicyclic Graph
Dratman, Ezequiel
; Grippo, Luciano Norberto
; Safe, Martin Dario
; da Silva Jr., Celso M; Del Vecchio, Renata R.
Colaboradores:
Coutinho, Gabriel; Kohayakawa, Yoshiharu; dos Santos, Vinicius
Tipo del evento:
Simposio
Nombre del evento:
LAGOS 2019: X Latin and American Algorithms, Graphs and Optimization Symposium
Fecha del evento:
06/2019
Institución Organizadora:
Universidad Federal de Minas Gerais;
Título de la revista:
Electronic Notes in Theoretical Computer Science
Editorial:
Elsevier
ISSN:
1571-0661
Idioma:
Inglés
Clasificación temática:
Resumen
Let G be a connected graph with vertex set V = {v1, ..., vn}. The distance d(vi, vj) between two vertices vi and vj is the number of edges of a shortest path linking them. The distance matrix of G is the n × n matrix such that its (i, j)-entry is equal to d(vi, vj). A formula to compute the determinant of this matrix in terms of the number of vertices was found when the graph either is a tree or is a unicyclic graph. For a byciclic graph, the determinant is known in the case where the cycles have no common edges. In this paper, we present some advances for the remaining cases; i.e., when the cycles share at least one edge. We also present a conjecture for the unsolved cases.
Palabras clave:
bicyclic graphs
,
determinant
,
distance matrix
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(SEDE CENTRAL)
Eventos de SEDE CENTRAL
Eventos de SEDE CENTRAL
Citación
Computing the Determinant of the Distance Matrix of a Bicyclic Graph; LAGOS 2019: X Latin and American Algorithms, Graphs and Optimization Symposium; Belo Horizonte; Brasil; 2019
Compartir