Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Using safety stocks and simulation to solve the vehicle routing problem with stochastic demands

Juan, A.; Faulin, J.; Grasman, S.; Riera, D.; Marull, J.; Mendez, Carlos AlbertoIcon
Fecha de publicación: 12/2011
Editorial: Elsevier
Revista: Transportation Research. Part C, Emerging Technologies
ISSN: 0968-090X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

After introducing the Vehicle Routing Problem with Stochastic Demands (VRPSD) and some related work, this paper proposes a flexible solution methodology. The logic behind this methodology is to transform the issue of solving a given VRPSD instance into an issue of solving a small set of Capacitated Vehicle Routing Problem (CVRP) instances. Thus, our approach takes advantage of the fact that extremely efficient metaheuristics for the CVRP already exists. The CVRP instances are obtained from the original VRPSD instance by assigning different values to the level of safety stocks that routed vehicles must employ to deal with unexpected demands. The methodology also makes use of Monte Carlo simulation (MCS) to obtain estimates of the reliability of each aprioristic solution – that is, the probability that no vehicle runs out of load before completing its delivering route – as well as for the expected costs associated with corrective routing actions (recourse actions) after a vehicle runs out of load before completing its route. This way, estimates for expected total costs of different routing alternatives are obtained. Finally, an extensive numerical experiment is included in the paper with the purpose of analyzing the efficiency of the described methodology under different uncertainty scenarios
Palabras clave: Vehicle Routing Problem with Stochastic Demands , Monte Carlo Simulation , Reliability Indices , Metaheuristics
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.076Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/13006
DOI: http://dx.doi.org/10.1016/j.trc.2010.09.007
URL: http://www.sciencedirect.com/science/article/pii/S0968090X10001439
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Juan, A.; Faulin, J.; Grasman, S.; Riera, D.; Marull, J.; et al.; Using safety stocks and simulation to solve the vehicle routing problem with stochastic demands; Elsevier; Transportation Research. Part C, Emerging Technologies; 19; 5; 12-2011; 751-765
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES