Artículo
Optimal common resource in majorization-based resource theories
Fecha de publicación:
08/2019
Editorial:
IOP Publishing
Revista:
New Journal of Physics
ISSN:
1367-2630
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We address the problem of finding the optimal common resource for an arbitrary family of target states in quantum resource theories based on majorization, that is, theories whose conversion law between resources is determined by a majorization relationship, such as it happens with entanglement, coherence or purity. We provide a conclusive answer to this problem by appealing to the completeness property of the majorization lattice. We give a proof of this property that relies heavily on the more geometric construction provided by the Lorenz curves, which allows to explicitly obtain the corresponding infimum and supremum. Our framework includes the case of possibly non-denumerable sets of target states (i.e. targets sets described by continuous parameters). In addition, we show that a notion of approximate majorization, which has recently found application in quantum thermodynamics, is in close relation with the completeness of this lattice. Finally, we provide some examples of optimal common resources within the resource theory of quantum coherence.
Palabras clave:
MAJORIZATION LATTICE
,
OPTIMAL COMMON RESOURCE
,
QUANTUM RESOURCE THEORIES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Bosyk, Gustavo Martin; Bellomo, Guido; Holik, Federico Hernán; Freytes, H.; Sergioli, Giuseppe; Optimal common resource in majorization-based resource theories; IOP Publishing; New Journal of Physics; 21; 8; 8-2019; 083028-083043
Compartir
Altmétricas