Mostrar el registro sencillo del ítem

dc.contributor.author
Dorr, Francisco  
dc.contributor.author
Chaves, Hernán  
dc.contributor.author
Serra, María Mercedes  
dc.contributor.author
Ramirez, Andres  
dc.contributor.author
Costa, Martín Elías  
dc.contributor.author
Seia, Joaquín Oscar  
dc.contributor.author
Cejas, Claudia  
dc.contributor.author
Castro, Marcelo  
dc.contributor.author
Eyheremendy, Eduardo  
dc.contributor.author
Fernández Slezak, Diego  
dc.contributor.author
Farez, Mauricio Franco  
dc.date.available
2021-03-26T22:57:17Z  
dc.date.issued
2020-12  
dc.identifier.citation
Dorr, Francisco; Chaves, Hernán; Serra, María Mercedes; Ramirez, Andres; Costa, Martín Elías; et al.; COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence; Elsevier; Intelligence-Based Medicine; 3-4; 100014; 12-2020; 1-7  
dc.identifier.issn
2666-5212  
dc.identifier.uri
http://hdl.handle.net/11336/129095  
dc.description.abstract
PurposeTo investigate the diagnostic performance of an Artificial Intelligence (AI) system for detection of COVID-19 in chest radiographs (CXR), and compare results to those of physicians working alone, or with AI support.Materials and methodsAn AI system was fine-tuned to discriminate confirmed COVID-19 pneumonia, from other viral and bacterial pneumonia and non-pneumonia patients and used to review 302 CXR images from adult patients retrospectively sourced from nine different databases. Fifty-four physicians blind to diagnosis, were invited to interpret images under identical conditions in a test set, and randomly assigned either to receive or not receive support from the AI system. Comparisons were then made between diagnostic performance of physicians working with and without AI support. AI system performance was evaluated using the area under the receiver operating characteristic (AUROC), and sensitivity and specificity of physician performance compared to that of the AI system.ResultsDiscrimination by the AI system of COVID-19 pneumonia showed an AUROC curve of 0.96 in the validation and 0.83 in the external test set, respectively. The AI system outperformed physicians in the AUROC overall (70% increase in sensitivity and 1% increase in specificity, p < 0.0001). When working with AI support, physicians increased their diagnostic sensitivity from 47% to 61% (p < 0.001), although specificity decreased from 79% to 75% (p = 0.007).ConclusionsOur results suggest interpreting chest radiographs (CXR) supported by AI, increases physician diagnostic sensitivity for COVID-19 detection. This approach involving a human-machine partnership may help expedite triaging efforts and improve resource allocation in the current crisis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
DEEP LEARNING  
dc.subject
COVID  
dc.subject
THORAX X-RAY  
dc.subject
COVID-19  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-03-26T12:59:49Z  
dc.journal.volume
3-4  
dc.journal.number
100014  
dc.journal.pagination
1-7  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Dorr, Francisco. Entelai; Argentina  
dc.description.fil
Fil: Chaves, Hernán. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina  
dc.description.fil
Fil: Serra, María Mercedes. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina  
dc.description.fil
Fil: Ramirez, Andres. Entelai; Argentina  
dc.description.fil
Fil: Costa, Martín Elías. Entelai; Argentina  
dc.description.fil
Fil: Seia, Joaquín Oscar. Entelai; Argentina  
dc.description.fil
Fil: Cejas, Claudia. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina  
dc.description.fil
Fil: Castro, Marcelo. Departamento de Diagnóstico por Imágenes, Clínica Indisa ; Chile  
dc.description.fil
Fil: Eyheremendy, Eduardo. Hospital Alemán; Argentina  
dc.description.fil
Fil: Fernández Slezak, Diego. Entelai; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Farez, Mauricio Franco. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Intelligence-Based Medicine  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2666521220300144?via%3Dihub  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ibmed.2020.100014