Mostrar el registro sencillo del ítem
dc.contributor.author
Dorr, Francisco
dc.contributor.author
Chaves, Hernán
dc.contributor.author
Serra, María Mercedes
dc.contributor.author
Ramirez, Andres
dc.contributor.author
Costa, Martín Elías
dc.contributor.author
Seia, Joaquín Oscar
dc.contributor.author
Cejas, Claudia
dc.contributor.author
Castro, Marcelo
dc.contributor.author
Eyheremendy, Eduardo
dc.contributor.author
Fernández Slezak, Diego
dc.contributor.author
Farez, Mauricio Franco
dc.date.available
2021-03-26T22:57:17Z
dc.date.issued
2020-12
dc.identifier.citation
Dorr, Francisco; Chaves, Hernán; Serra, María Mercedes; Ramirez, Andres; Costa, Martín Elías; et al.; COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence; Elsevier; Intelligence-Based Medicine; 3-4; 100014; 12-2020; 1-7
dc.identifier.issn
2666-5212
dc.identifier.uri
http://hdl.handle.net/11336/129095
dc.description.abstract
PurposeTo investigate the diagnostic performance of an Artificial Intelligence (AI) system for detection of COVID-19 in chest radiographs (CXR), and compare results to those of physicians working alone, or with AI support.Materials and methodsAn AI system was fine-tuned to discriminate confirmed COVID-19 pneumonia, from other viral and bacterial pneumonia and non-pneumonia patients and used to review 302 CXR images from adult patients retrospectively sourced from nine different databases. Fifty-four physicians blind to diagnosis, were invited to interpret images under identical conditions in a test set, and randomly assigned either to receive or not receive support from the AI system. Comparisons were then made between diagnostic performance of physicians working with and without AI support. AI system performance was evaluated using the area under the receiver operating characteristic (AUROC), and sensitivity and specificity of physician performance compared to that of the AI system.ResultsDiscrimination by the AI system of COVID-19 pneumonia showed an AUROC curve of 0.96 in the validation and 0.83 in the external test set, respectively. The AI system outperformed physicians in the AUROC overall (70% increase in sensitivity and 1% increase in specificity, p < 0.0001). When working with AI support, physicians increased their diagnostic sensitivity from 47% to 61% (p < 0.001), although specificity decreased from 79% to 75% (p = 0.007).ConclusionsOur results suggest interpreting chest radiographs (CXR) supported by AI, increases physician diagnostic sensitivity for COVID-19 detection. This approach involving a human-machine partnership may help expedite triaging efforts and improve resource allocation in the current crisis.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
COVID
dc.subject
THORAX X-RAY
dc.subject
COVID-19
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-03-26T12:59:49Z
dc.journal.volume
3-4
dc.journal.number
100014
dc.journal.pagination
1-7
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Dorr, Francisco. Entelai; Argentina
dc.description.fil
Fil: Chaves, Hernán. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina
dc.description.fil
Fil: Serra, María Mercedes. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina
dc.description.fil
Fil: Ramirez, Andres. Entelai; Argentina
dc.description.fil
Fil: Costa, Martín Elías. Entelai; Argentina
dc.description.fil
Fil: Seia, Joaquín Oscar. Entelai; Argentina
dc.description.fil
Fil: Cejas, Claudia. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina
dc.description.fil
Fil: Castro, Marcelo. Departamento de Diagnóstico por Imágenes, Clínica Indisa ; Chile
dc.description.fil
Fil: Eyheremendy, Eduardo. Hospital Alemán; Argentina
dc.description.fil
Fil: Fernández Slezak, Diego. Entelai; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Farez, Mauricio Franco. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Intelligence-Based Medicine
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2666521220300144?via%3Dihub
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ibmed.2020.100014
Archivos asociados