Artículo
Prediction of cell position using single-cell transcriptomic data: an iterative procedure
Fecha de publicación:
10/2019
Editorial:
F1000 Research Ltd
Revista:
F1000Research
ISSN:
2046-1402
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. To develop new algorithms for this purpose, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). In the spirit of this framework, we describe here the proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(IIB-INTECH)
Articulos de INST.DE INVEST.BIOTECNOLOGICAS - INSTITUTO TECNOLOGICO CHASCOMUS
Articulos de INST.DE INVEST.BIOTECNOLOGICAS - INSTITUTO TECNOLOGICO CHASCOMUS
Citación
Alonso, Andrés Mariano; Carrea, Alejandra; Diambra, Luis Anibal; Prediction of cell position using single-cell transcriptomic data: an iterative procedure; F1000 Research Ltd; F1000Research; 8; 1775; 10-2019; 1-7
Compartir
Altmétricas