Mostrar el registro sencillo del ítem

dc.contributor.author
Nadin, Silvina Beatriz  
dc.contributor.author
Ciocca, Daniel Ramon  
dc.contributor.other
Thomas, Allison E.  
dc.date.available
2021-03-23T17:28:35Z  
dc.date.issued
2010  
dc.identifier.citation
Nadin, Silvina Beatriz; Ciocca, Daniel Ramon; Participation of heat shock proteins in DNA repair mechanisms in cancer; Nova Science Publishers; 2010; 165-186  
dc.identifier.isbn
978-1-61668-914-8  
dc.identifier.uri
http://hdl.handle.net/11336/128829  
dc.description.abstract
Heat shock proteins (HSPs) are well known as molecular chaperones, playing important roles in cellular metabolism, escorting other proteins during aggregation, disaggregation, folding, and unfolding. They have been classified in families according to their molecular weight, i.e. HSPA (HSP70) and HSPH (HSP110), HSP90/HSPC, HSPD1 (HSP60), DNAJ (HSP40), and HSPB (small heat shock proteins including HSP27). HSPs are produced under normal conditions (constitutive) and in response to various stressful conditions/agents such as heat (inducible form). Several HSPs have been involved in cytoprotection, having antiapoptotic roles, and in addition some have been involved in drug resistance to antineoplastic drugs. More recently, it has been also studied the relationship of the HSPs with DNA repair proteins. DNA is constantly subject to numerous insults from endogenous sources (cellular metabolism) and exogenous sources (environmental agents), if this damage is not corrected can lead to genome instability and cancer. Fortunately, our cells count with several DNA-repair pathways to correct the DNA damage and to prevent its consequences. Although the participation of HSPs in DNA repair has received little attention, they are now receiving more interest as possible targets for cancer therapy. Here, we review the participation of HSPs in DNA repair pathways and their implications in cancer therapy and drug sensitivity. Some of the HSPs can travel to the nucleus and it is clear that although the HSPs are not capable of repairing the DNA damages by themselves, they efficiently contribute to the different mechanisms of DNA repair as part of their molecular chaperone capabilities, interacting with DNA repair proteins producing their stimulation and reactivation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nova Science Publishers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DNA repair  
dc.subject
Heat shock proteins  
dc.subject
oncology  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Participation of heat shock proteins in DNA repair mechanisms in cancer  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-08-04T20:08:03Z  
dc.journal.pagination
165-186  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Nadin, Silvina Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina  
dc.description.fil
Fil: Ciocca, Daniel Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://novapublishers.com/shop/dna-damage-repair-repair-mechanisms-and-aging/  
dc.conicet.paginas
550  
dc.source.titulo
DNA Damage Repair, Repair Mechanisms and Aging