Mostrar el registro sencillo del ítem

dc.contributor.author
Hernando, Marcelo Pablo  
dc.contributor.author
Malanga, Gabriela Fabiana  
dc.contributor.author
Almandoz, Gaston Osvaldo  
dc.contributor.author
Schloss, Irene Ruth  
dc.contributor.author
Ferreyra, Gustavo Adolfo  
dc.contributor.other
Hoffmeyer, Monica Susana  
dc.contributor.other
Sabatini, María Belén  
dc.contributor.other
Brandini, Frederico P.  
dc.contributor.other
Calliari, Danilo Luis  
dc.contributor.other
Santinelli, Norma Herminia  
dc.date.available
2021-03-23T15:21:50Z  
dc.date.issued
2018  
dc.identifier.citation
Hernando, Marcelo Pablo; Malanga, Gabriela Fabiana; Almandoz, Gaston Osvaldo; Schloss, Irene Ruth; Ferreyra, Gustavo Adolfo; Responses of Subantarctic Marine Phytoplankton to Ozone Decrease and Increased Temperature; Springer; 2018; 541-563  
dc.identifier.isbn
978-3-319-77869-3  
dc.identifier.uri
http://hdl.handle.net/11336/128814  
dc.description.abstract
Temperature and ultraviolet B radiation (UVB, 280?315 nm) are externalstressors that affect organisms in mid and high latitudes in a combined way. Thecombined effects of both variables on natural marine phytoplankton from the Beagle Channel (Argentina) were examined during a 7-day mesocosm experiment. Wetested the hypothesis that increased temperature (HT, +3 °C) will offset negative effects on phytoplankton by UVB (natural, NUVB, and high, HUVB, simulating a 60% decrease in stratospheric ozone layer thickness). The response of the entire phytoplankton assemblage, in terms of phytoplankton biomass, community composition,reactive oxygen species (ROS), lipid damage (TBARS), nonenzymatic antioxidants (α-tocopherol (αT) and β-carotene (βC)), and mycosporine-like amino acids (MAAs),was evaluated. On the first exposure day, assemblages exposed to HUVB showed a significant increase in ROS content, regardless of the temperature, while lipid damage was significantly higher at HT and HUVB. However, on day 2, lipid damage was significantly lower possibly due to the consumption of the nonenzymatic antioxidants that protected the membranes from further damage. Under normal temperature (NT) conditions, ROS concentrations were significantly lower compared with day 1,and nonenzymatic antioxidant concentrations remained high (0.025 nmol C−1 compared with 0.05 nmol C−1 at initial time). ROS increased again in HT-HUVB and incontrol (NT-NUVB), in coincidence with a significant increase in UVB radiation on day 4. However, the lipid damage was significantly lower in HT-HUVB than in control conditions possibly due to a higher consumption of nonenzymatic antioxidants and probably also to a higher activity of enzymatic antioxidants by the effect of the higher temperature. The same results were observed for HT-NUVB, with low lipid damage. During all experiment no significant differences were observed in carbonnormalized MAAs. After day 4, when nutrients became limiting, high temperature significantly influenced community structure, with a negative impact on diatoms and positive on phytoflagellates, independently of the UVB doses. Our results show that subantarctic phytoplankton is able to respond to a ROS increase via antioxidant response in high irradiance conditions. In addition, increased temperature and phytoplanktoncommunity composition play a central role in this response. At lower UVBdoses, diatoms were able to avoid UVB lipid damage by αT and βC synthesis.However, with maximum doses, phytoflagellates showed a best UVB adaptation tohigh temperature conditions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
UBVR ·  
dc.subject
Increased temperature ·  
dc.subject
Beagle Channel ·  
dc.subject
Nonenzymatic antioxidants  
dc.subject
Phytoplankton assemblage ·  
dc.subject
ROS ·  
dc.subject.classification
Biología Marina, Limnología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Responses of Subantarctic Marine Phytoplankton to Ozone Decrease and Increased Temperature  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2021-03-12T19:17:05Z  
dc.journal.pagination
541-563  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Hernando, Marcelo Pablo. Comisión Nacional de Energía Atómica; Argentina  
dc.description.fil
Fil: Malanga, Gabriela Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina  
dc.description.fil
Fil: Almandoz, Gaston Osvaldo. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Schloss, Irene Ruth. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad Nacional de Tierra del Fuego; Argentina  
dc.description.fil
Fil: Ferreyra, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-77869-3_24  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-319-77869-3_24  
dc.conicet.paginas
574  
dc.source.titulo
Plankton Ecology of the Southwestern Atlantic: From the Subtropical to the Subantarctic Realm