Artículo
Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality'
Fecha de publicación:
09/2019
Editorial:
Robert Rosebrugh
Revista:
Theory And Applications Of Categories
e-ISSN:
1201-561X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let E be a topos. If l is a level of E with monic skeleta then it makes sense to consider the objects in E that have l-skeletal boundaries. In particular, if p : E o S is a pre-cohesive geometric morphism then its centre (that may be called level 0) has monic skeleta. Let level 1 be the Aufhebung of level 0. We show that if level 1 has monic skeleta then the quotients of 0-separated objects with 0-skeletal boundaries are 1-skeletal. We also prove that in several examples (such as the classifier of non-trivial Boolean algebras, simplicial sets and the classifier of strictly bipointed objects) every 1-skeletal object is of that form.
Palabras clave:
Topos Theory
,
Axiomatic Cohesion
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Menni, Matías; Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality'; Robert Rosebrugh; Theory And Applications Of Categories; 34; 25; 9-2019; 714-735
Compartir