Mostrar el registro sencillo del ítem

dc.contributor.author
Ziemer, Paulo G. P.  
dc.contributor.author
Bulant, Carlos Alberto  
dc.contributor.author
Orlando, José Ignacio  
dc.contributor.author
Maso Talou, Gonzalo D.  
dc.contributor.author
Mansilla Álvarez, Luis A.  
dc.contributor.author
Guedes Bezerra, Cristiano  
dc.contributor.author
Lemos, Pedro A.  
dc.contributor.author
García García, Héctor M.  
dc.contributor.author
Blanco, Pablo J.  
dc.date.available
2021-03-19T18:23:13Z  
dc.date.issued
2020-11  
dc.identifier.citation
Ziemer, Paulo G. P.; Bulant, Carlos Alberto; Orlando, José Ignacio; Maso Talou, Gonzalo D.; Mansilla Álvarez, Luis A.; et al.; Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets; Oxford University Press; European Heart Journal - Digital Health; 1; 1; 11-2020; 1-8  
dc.identifier.issn
2634-3916  
dc.identifier.uri
http://hdl.handle.net/11336/128682  
dc.description.abstract
Aims: Assessment of minimum lumen areas in intravascular ultrasound (IVUS) pullbacks is time-consuming and demands adequately trained personnel. In this work, we introduce a novel and fully automated pipeline to segment the lumen boundary in IVUS datasets. Methods and results First, an automated gating is applied to select end-diastolic frames and bypass saw-tooth artefacts. Second, within a machine learning (ML) environment, we automatically segment the lumen boundary using a multi-frame (MF) convolutional neural network (MFCNN). Finally, we use the theory of Gaussian processes (GPs) to regress the final lumen boundary. The dataset consisted of 85 IVUS pullbacks (52 patients). The dataset was partitioned at the pullback-level using 73 pullbacks for training (20 586 frames), 6 pullbacks for validation (1692 frames), and 6 for testing (1692 frames). The degree of overlapping, between the ground truth and ML contours, median (interquartile range, IQR) systematically increased from 0.896 (0.874–0.933) for MF1 to 0.925 (0.911–0.948) for MF11. The median (IQR) of the distance error was also reduced from 3.83 (2.94–4.98)% for MF1 to 3.02 (2.25–3.95)% for MF11-GP. The corresponding median (IQR) in the lumen area error remained between 5.49 (2.50–10.50)% for MF1 and 5.12 (2.15–9.00)% for MF11-GP. The dispersion in the relative distance and area errors consistently decreased as we increased the number of frames, and also when the GP regressor was coupled to the MFCNN output. Conclusion: These results demonstrate that the proposed ML approach is suitable to effectively segment the lumen boundary in IVUS scans, reducing the burden of costly and time-consuming manual delineation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
IVUS  
dc.subject
SEGMENTATION  
dc.subject
GATING  
dc.subject
NEURAL NETWORKS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-02-10T21:03:15Z  
dc.journal.volume
1  
dc.journal.number
1  
dc.journal.pagination
1-8  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Ziemer, Paulo G. P.. Laboratorio Nacional de Computacao Cientifica; Brasil  
dc.description.fil
Fil: Bulant, Carlos Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.description.fil
Fil: Orlando, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: Maso Talou, Gonzalo D.. University of Auckland; Nueva Zelanda  
dc.description.fil
Fil: Mansilla Álvarez, Luis A.. Laboratorio Nacional de Computacao Cientifica; Brasil  
dc.description.fil
Fil: Guedes Bezerra, Cristiano. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Lemos, Pedro A.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: García García, Héctor M.. Georgetown University School of Medicine; Estados Unidos  
dc.description.fil
Fil: Blanco, Pablo J.. Laboratorio Nacional de Computacao Cientifica; Brasil  
dc.journal.title
European Heart Journal - Digital Health  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/ehjdh/advance-article/doi/10.1093/ehjdh/ztaa014/5998645  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/ehjdh/ztaa014