Mostrar el registro sencillo del ítem
dc.contributor.author
Ziemer, Paulo G. P.
dc.contributor.author
Bulant, Carlos Alberto
dc.contributor.author
Orlando, José Ignacio
dc.contributor.author
Maso Talou, Gonzalo D.
dc.contributor.author
Mansilla Álvarez, Luis A.
dc.contributor.author
Guedes Bezerra, Cristiano
dc.contributor.author
Lemos, Pedro A.
dc.contributor.author
García García, Héctor M.
dc.contributor.author
Blanco, Pablo J.
dc.date.available
2021-03-19T18:23:13Z
dc.date.issued
2020-11
dc.identifier.citation
Ziemer, Paulo G. P.; Bulant, Carlos Alberto; Orlando, José Ignacio; Maso Talou, Gonzalo D.; Mansilla Álvarez, Luis A.; et al.; Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets; Oxford University Press; European Heart Journal - Digital Health; 1; 1; 11-2020; 1-8
dc.identifier.issn
2634-3916
dc.identifier.uri
http://hdl.handle.net/11336/128682
dc.description.abstract
Aims: Assessment of minimum lumen areas in intravascular ultrasound (IVUS) pullbacks is time-consuming and demands adequately trained personnel. In this work, we introduce a novel and fully automated pipeline to segment the lumen boundary in IVUS datasets.
Methods and results First, an automated gating is applied to select end-diastolic frames and bypass saw-tooth artefacts. Second, within a machine learning (ML) environment, we automatically segment the lumen boundary using a multi-frame (MF) convolutional neural network (MFCNN). Finally, we use the theory of Gaussian processes (GPs) to regress the final lumen boundary. The dataset consisted of 85 IVUS pullbacks (52 patients). The dataset was partitioned at the pullback-level using 73 pullbacks for training (20 586 frames), 6 pullbacks for validation (1692 frames), and 6 for testing (1692 frames). The degree of overlapping, between the ground truth and ML contours, median (interquartile range, IQR) systematically increased from 0.896 (0.874–0.933) for MF1 to 0.925 (0.911–0.948) for MF11. The median (IQR) of the distance error was also reduced from 3.83 (2.94–4.98)% for MF1 to 3.02 (2.25–3.95)% for MF11-GP. The corresponding median (IQR) in the lumen area error remained between 5.49 (2.50–10.50)% for MF1 and 5.12 (2.15–9.00)% for MF11-GP. The dispersion in the relative distance and area errors consistently decreased as we increased the number of frames, and also when the GP regressor was coupled to the MFCNN output. Conclusion: These results demonstrate that the proposed ML approach is suitable to effectively segment the lumen boundary in IVUS scans, reducing the burden of costly and time-consuming manual delineation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
IVUS
dc.subject
SEGMENTATION
dc.subject
GATING
dc.subject
NEURAL NETWORKS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-02-10T21:03:15Z
dc.journal.volume
1
dc.journal.number
1
dc.journal.pagination
1-8
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Ziemer, Paulo G. P.. Laboratorio Nacional de Computacao Cientifica; Brasil
dc.description.fil
Fil: Bulant, Carlos Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
dc.description.fil
Fil: Orlando, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
dc.description.fil
Fil: Maso Talou, Gonzalo D.. University of Auckland; Nueva Zelanda
dc.description.fil
Fil: Mansilla Álvarez, Luis A.. Laboratorio Nacional de Computacao Cientifica; Brasil
dc.description.fil
Fil: Guedes Bezerra, Cristiano. Universidade de Sao Paulo; Brasil
dc.description.fil
Fil: Lemos, Pedro A.. Universidade de Sao Paulo; Brasil
dc.description.fil
Fil: García García, Héctor M.. Georgetown University School of Medicine; Estados Unidos
dc.description.fil
Fil: Blanco, Pablo J.. Laboratorio Nacional de Computacao Cientifica; Brasil
dc.journal.title
European Heart Journal - Digital Health
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/ehjdh/advance-article/doi/10.1093/ehjdh/ztaa014/5998645
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/ehjdh/ztaa014
Archivos asociados