Mostrar el registro sencillo del ítem

dc.contributor.author
Martelo Guarin, David Fernando  
dc.contributor.author
Mateo, Antonio  
dc.contributor.author
Chapetti, Mirco Daniel  
dc.date.available
2021-03-18T18:37:50Z  
dc.date.issued
2015-07  
dc.identifier.citation
Martelo Guarin, David Fernando; Mateo, Antonio; Chapetti, Mirco Daniel; Fatigue crack growth of a metastable austenitic stainless steel; Elsevier; International Journal of Fatigue; 80; 7-2015; 406-416  
dc.identifier.issn
0142-1123  
dc.identifier.uri
http://hdl.handle.net/11336/128573  
dc.description.abstract
The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor ΔK, the effective stress intensity factor ΔKeff, and the two driving force parameter proposed by Kujawski K∗.The finite element method is used to calculate the stress intensity factor of the specimens used in this investigation. The new stress intensity factor solution has been proved to be an alternative to explain contradictory results found in the literature.Fatigue crack propagation tests have been carried out on thin sheets with two different microstructural conditions and different load ratios. The influence of microstructural and mechanical variables has been analyzed using different mechanisms proposed in the literature. The influence of the compressive residual stress induced by the martensitic transformation is determined by using a model based on the proposal of McMeeking et al. The analyses demonstrate the necessity of including Kmax as a true driving force for the fatigue crack growth. A combined parameter is proposed to explain the effects of different variables on the fatigue crack growth rate curves. It is found that along with residual stresses, the microcracks and microvoids are other factor affecting the fatigue crack growth rate in the steel studied.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Fatigue crack propagation  
dc.subject
Metastable austenitic stainless steel  
dc.subject
Crack closure  
dc.subject
Martensitic transformation  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Fatigue crack growth of a metastable austenitic stainless steel  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-01-18T15:46:28Z  
dc.journal.volume
80  
dc.journal.pagination
406-416  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Martelo Guarin, David Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Mateo, Antonio. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Chapetti, Mirco Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.journal.title
International Journal of Fatigue  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0142112315002091?via%3Dihub  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijfatigue.2015.06.029