Mostrar el registro sencillo del ítem

dc.contributor.author
Vrech, Sonia Mariel  
dc.contributor.author
Etse, Jose Guillermo  
dc.contributor.author
Caggiano, Antonio  
dc.date.available
2017-02-10T17:12:12Z  
dc.date.issued
2016-03  
dc.identifier.citation
Vrech, Sonia Mariel; Etse, Jose Guillermo; Caggiano, Antonio; Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete; Elsevier; International Journal Of Solids And Structures; 81; 3-2016; 337-349  
dc.identifier.issn
0020-7683  
dc.identifier.uri
http://hdl.handle.net/11336/12836  
dc.description.abstract
In this work a thermodynamically consistent elasto-plastic microplane constitutive theory, aimed at simulating the failure behavior of Steel Fiber Reinforced Concrete (SFRC), is developed. The continuum (smeared crack) formulation, based on the microplane theory, assumes a parabolic maximum strength criterion in terms of normal and shear (micro-)stresses evaluated on each microplane to simulate the failure behavior of concrete. In the high confinement regime, a non-associated plastic flow rule is also defined in terms of microplane stresses. The well-known “Mixture Theory” is considered to account for the presence of fibers in concrete matrix. The interaction between steel fibers and cracked concrete in the form of fiber-to-concrete bond-slip and dowel mechanisms is taken into account. The complete formulation is fully consistent with the thermodynamic laws. After describing the proposed constitutive theory, numerical analyses at constitutive level of SFRC failure behavior are presented and discussed. Thereby, the variations of the fracture energy, post-peak strength and cracking behavior with the fiber contents are evaluated and compared against experimental data. The attention also focuses on the evaluation of the sensitivity of SFRC failure predictions with the proposed constitutive model regarding fiber orientation on one hand, and the bond-slip bridging actions and dowel mechanism on the other hand.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Microplanes  
dc.subject
Plasticity  
dc.subject
Failure  
dc.subject
Mixture  
dc.subject
Steel Fibers Reinforcement  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-02-09T17:57:55Z  
dc.journal.volume
81  
dc.journal.pagination
337-349  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Vrech, Sonia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Cs.exactas y Tecnologia. Centro de Metodos Numericos y Computacionales En Ingenieria; Argentina  
dc.description.fil
Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Cs.exactas y Tecnologia. Centro de Metodos Numericos y Computacionales En Ingenieria; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Laboratorio de Metodos Numericos En Ingenieria; Argentina  
dc.description.fil
Fil: Caggiano, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Laboratorio de Metodos Numericos En Ingenieria; Argentina  
dc.journal.title
International Journal Of Solids And Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijsolstr.2015.12.007  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020768315004990