Artículo
A Categorical Duality for Semilattices and Lattices
Fecha de publicación:
10/2020
Editorial:
Springer
Revista:
Applied Categorical Structures
ISSN:
0927-2852
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The main aim of this article is to develop a categorical duality between the category of semilattices with homomorphisms and a category of certain topological spaces with certain morphisms. The principal tool to achieve this goal is the notion of irreducible filter. Then, we apply this dual equivalence to obtain a topological duality for the category of bounded lattices and lattice homomorphism. We show that our topological dualities for semilattices and lattices are natural generalizations of the duality developed by Stone for distributive lattices through spectral spaces. Finally, we obtain directly the categorical equivalence between our topological spaces and those presented for Moshier and Jipsen (Algebra Univers 71(2):109–126, 2014).
Palabras clave:
DUALITY
,
FILTERS
,
LATTICES
,
SEMILATTICES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Celani, Sergio Arturo; González, Luciano; A Categorical Duality for Semilattices and Lattices; Springer; Applied Categorical Structures; 28; 5; 10-2020; 853-875
Compartir
Altmétricas