Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Spatial predictive modelling essential to assess the environmental impacts of herbicides

Giannini Kurina, FrancaIcon ; Hang, Susana; Macchiavelli, Raúl E.; Balzarini, Monica GracielaIcon
Fecha de publicación: 11/2019
Editorial: Elsevier Science
Revista: Geoderma
ISSN: 0016-7061
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias del Suelo

Resumen

The precise prediction of adsorption coefficient (Kd) of herbicides retention in soil requires a careful and robust assessment of alternative statistical methods for predictive modelling. In this work, Kd was modelled as function of soil variables from a regional soil survey using various frameworks: Ordinary and Partial Least Squares regression, Random Forests, Generalized Boosted regression (GB), and Bayesian regression with INLA (INLA). Each approach is applied with and without spatial coordinates included in the covariates for the mean structure. Further, the residuals from the mean structure are either assumed independent or assumed spatially correlated and kriged. For model validation, measurements of pointwise and global predictive ability were assessed. All methods showed good performance (prediction error < 20%). GB without spatial coordinates in the mean structure, nor residuals kriged (i.e. the raw GB predictions based on the covariates) gave a small pointwise classification rate, but INLA with spatial constraints yielded the best fit (the smallest mean squared prediction errors) which resulted suitable for both, process understanding and mapping. The modelling has been illustrated for mapping glyphosate retention, with aluminum oxides, pH, sand, and clay percentages identified as master variables. Results may be extended to other herbicides and dynamic parameters using georeferenced data.
Palabras clave: HERBICIDE RETENTION , INLA , PREDICTIVE MODEL , SPATIAL DATA
Ver el registro completo
 
Archivos asociados
Tamaño: 2.685Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/128202
URL: https://www.sciencedirect.com/science/article/pii/S0016706119307396
DOI: http://dx.doi.org/10.1016/j.geoderma.2019.07.032
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Giannini Kurina, Franca; Hang, Susana; Macchiavelli, Raúl E.; Balzarini, Monica Graciela; Spatial predictive modelling essential to assess the environmental impacts of herbicides; Elsevier Science; Geoderma; 354; 113874; 11-2019; 1-3
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES