Mostrar el registro sencillo del ítem

dc.contributor.author
Fumero, María Verónica  
dc.contributor.author
Sulyok, Michael  
dc.contributor.author
Ramirez, Maria Laura  
dc.contributor.author
Leslie, John  
dc.contributor.author
Chulze, Sofia Noemi  
dc.date.available
2021-03-10T14:54:49Z  
dc.date.issued
2020-08-20  
dc.identifier.citation
Fumero, María Verónica; Sulyok, Michael; Ramirez, Maria Laura; Leslie, John; Chulze, Sofia Noemi; Effects of water activity and temperature on fusaric and fusarinolic acid production by Fusarium temperatum; Elsevier; Food Control; 114; 107263; 20-8-2020; 107-263  
dc.identifier.issn
0956-7135  
dc.identifier.uri
http://hdl.handle.net/11336/127956  
dc.description.abstract
Fusaric acid (FA) is a secondary metabolite produced by several Fusarium species that commonly is isolated from maize and maize-based foods and feeds, and is toxic to some plants and animals, most notably cotton. Fusarinolic acid (FnA) is closely related to FA and is enzymatically derived from it, but much less is known about its toxicity to humans and other animals. We determined the effects of water activity (aW – 0.95, 0.98 and 0.995), temperature (15°, 25° and 30 °C), incubation time (7, 14, 21 and 28 days) and their interactions on FA and FnA production by two strains of F. temperatum isolated from maize growing on sterile maize grain. The amount of FA and FnA accumulated was measured by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). Both compounds were accumulated by both strains of F. temperatum under all evaluated conditions. The amount of FnA produced always exceeded the amount of FA produced (max 50,000 ng/g and 4,500 ng/g, respectively). Temperature, aW, incubation time, and the two- and three-way interactions amongst them all significantly impacted FA and FnA accumulation. Factors favouring fungal growth and mycotoxin production include insect damage, high humidity, delays in harvest, and improper (wet) storage. Grain colonization by F. temperatum begins in the field, but fungal growth and mycotoxin production can easily continue in storage if conditions are right. Thus, from a toxicological point of view, F. temperatum represents a risk for maize under both field and storage conditions. Our data enable better risk estimates and strategies to reduce FA and FnA in the food and feed chains. The highest level of FA was detected at 0.995aW and was independent of temperature and length of incubation, suggesting that there is a limit to the amount of FA that can be accumulated by F. temperatum growing under laboratory conditions. Strikingly high amounts of FnA were observed under all incubation conditions, often exceeding FA levels by 20× to 200× . This result suggests that FnA is more important to the fungus than is FA, and that FA might be little more than an intermediate in a pathway to FnA. The role of the accumulated FnA is unknown, but its role as a toxin may have been discounted since studies to date report limited toxicity. However, if FnA is tested for toxicity at higher levels, such as those identified in this study, then it could have significant toxicological, or other effects that have not previously been considered.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ABIOTIC STRESS  
dc.subject
ECOPHYSIOLOGY  
dc.subject
FOOD AND FEED CONTAMINANTS  
dc.subject
FUSARIUM TEMPERATUM  
dc.subject
MAIZE  
dc.subject
MYCOTOXINS  
dc.subject.classification
Micología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Effects of water activity and temperature on fusaric and fusarinolic acid production by Fusarium temperatum  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-10-15T14:06:59Z  
dc.journal.volume
114  
dc.journal.number
107263  
dc.journal.pagination
107-263  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Fumero, María Verónica. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigación en Micología y Micotoxicología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación en Micología y Micotoxicología; Argentina  
dc.description.fil
Fil: Sulyok, Michael. University of Natural Resources and Life Sciences. Center for Analytical Chemistry. Department of Agrobiotechnology; Austria  
dc.description.fil
Fil: Ramirez, Maria Laura. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigación en Micología y Micotoxicología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación en Micología y Micotoxicología; Argentina  
dc.description.fil
Fil: Leslie, John. Kansas State University. Throckmorton Plant Sciences Center. Department of Plant Pathology; Estados Unidos  
dc.description.fil
Fil: Chulze, Sofia Noemi. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigación en Micología y Micotoxicología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación en Micología y Micotoxicología; Argentina  
dc.journal.title
Food Control  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0956713520301791  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.foodcont.2020.107263