Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Left ventricle segmentation using a Bayesian approach with distance dependent shape priors

Cardenas, RodrigoIcon ; Curiale, Ariel HernánIcon ; Mato, GermanIcon
Fecha de publicación: 28/05/2020
Editorial: IOP Publishing
Revista: Biomedical Physics and Engineering Express
e-ISSN: 2057-1976
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

We propose a method for segmentation of the left ventricle in magnetic resonance cardiac images. The framework consists of an initial Bayesian segmentation of the central slice of the volume. This segmentation is used to locate a shape prior for the LV myocardial tissue. This shape prior is determined using the fact that the myocardium is approximately annular as seen in the short-axis. Then a second Bayesian segmentation is performed to obtain the final result. This procedure is repeated for the rest of the slices. An extrapolation of the area of the LV is used to determine a stopping criterion. The method was evaluated on the databases of the Cardiac Atlas project. Our results demonstrate a suitable accuracy for myocardial segmentation (≈0.8 Dice’s coefficient). For the endocardium and the epicardium the Dice’s coefficients are 0.94 and 0.9 respectively. The accuracy was also evaluated in terms of the Hausdorff distance and the average distance. For the myocardium we obtain 8 mm and 2 mm respectively. Our results demonstrate the capability and merits of the proposed method to estimate the structure of the LV. The method requires minimal user input and generates results with quality comparable to more complex approaches. This paper suggests a new efficient approach for automatic LV quantification based on a Bayesian technique with shape priors with errors comparable to state-of-the-art techniques.
Palabras clave: Segmentation , Left Ventricle , Unsupervised , Bayesian
Ver el registro completo
 
Archivos asociados
Tamaño: 1.868Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/127878
URL: https://iopscience.iop.org/article/10.1088/2057-1976/ab9556
DOI: http://dx.doi.org/10.1088/2057-1976/ab9556
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Cardenas, Rodrigo; Curiale, Ariel Hernán; Mato, German; Left ventricle segmentation using a Bayesian approach with distance dependent shape priors; IOP Publishing; Biomedical Physics and Engineering Express; 6; 4; 28-5-2020; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES