Artículo
One-body entanglement as a quantum resource in fermionic systems
Fecha de publicación:
10/2020
Editorial:
American Physical Society
Revista:
Physical Review A
ISSN:
1050-2947
e-ISSN:
2469-9934
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We show that one-body entanglement, which is a measure of the deviation of a pure fermionic state from a Slater determinant (SD) and is determined by the mixedness of the single-particle density matrix (SPDM), can be considered as a quantum resource. The associated theory has SDs and their convex hull as free states, and number conserving fermion linear optics operations (FLO), which include one-body unitary transformations and measurements of the occupancy of single-particle modes, as the basic free operations. We first provide a bipartitelike formulation of one-body entanglement, based on a Schmidt-like decomposition of a pure N-fermion state, from which the SPDM [together with the (N-1)-body density matrix] can be derived. It is then proved that under FLO operations the initial and postmeasurement SPDMs always satisfy a majorization relation, which ensures that these operations cannot increase, on average, the one-body entanglement. It is finally shown that this resource is consistent with a model of fermionic quantum computation which requires correlations beyond antisymmetrization. More general free measurements and the relation with mode entanglement are also discussed.
Palabras clave:
Entanglement entropy
,
Entanglement measures
,
Fermions
,
Quantum computation
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Gigena, Nicolás Alejandro; Di Tullio, Marco; Rossignoli, Raúl Dante; One-body entanglement as a quantum resource in fermionic systems; American Physical Society; Physical Review A; 102; 4; 10-2020; 1-11
Compartir
Altmétricas