Artículo
Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra
Fecha de publicación:
01/2011
Editorial:
American Mathematical Society
Revista:
Mathematics of Computation
ISSN:
1088-6842
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove optimal order error estimates for the Raviart-Thomas interpolation of arbitrary order under the maximum angle condition for triangles and under two generalizations of this condition, namely, the so-called three-dimensional maximum angle condition and the regular vertex property, for tetrahedra. Our techniques are different from those used in previous papers on the subject, and the results obtained are more general in several aspects. First, intermediate regularity is allowed; that is, for the Raviart-Thomas interpolation of degree k ≥ 0, we prove error estimates of order j + 1 when the vector field being approximated has components in WJ+1,p, for triangles or tetrahedra, where 0 ≤ j ≤ k and 1 ≤ p ≤ ∞. These results are new even in the two-dimensional case. Indeed, the estimate was known only in the case j = k. On the other hand, in the three-dimensional case, results under the maximum angle condition were known only for k = 0.
Palabras clave:
ANISOTROPIC FINITE ELEMENTS
,
MIXED FINITE ELEMENTS
,
RAVIART-THOMAS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Acosta, Gerardo Gabriel; Apel, Thomas; Duran, Ricardo Guillermo; Lombardi, Ariel Luis; Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra; American Mathematical Society; Mathematics of Computation; 80; 273; 1-2011; 141-163
Compartir
Altmétricas