Mostrar el registro sencillo del ítem

dc.contributor.author
Cox, David  
dc.contributor.author
Dickenstein, Alicia Marcela  
dc.contributor.author
Schenk, Hal  
dc.contributor.other
Peeva, Irena  
dc.date.available
2021-03-04T19:28:53Z  
dc.date.issued
2007  
dc.identifier.citation
Cox, David; Dickenstein, Alicia Marcela; Schenk, Hal; A case study in bigraded commutative algebra; Chapman and Hall; 2007; 67-111  
dc.identifier.isbn
9780429147876  
dc.identifier.uri
http://hdl.handle.net/11336/127516  
dc.description.abstract
We study the commutative algebra of three bihomogeneous polynomials p_0,p_1,p_2 of degree (2,1) in variables x,y;z,w, assuming that they never vanish simultaneously on P^1 x P^1. Unlike the situation for P^2, the Koszul complex of the p_i is never exact. The purpose of this article is to illustrate how bigraded commutative algebra differs from the classical graded case and to indicate some of the theoretical tools needed to understand the free resolution of the ideal generated by p_0,p_1,p_2.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Chapman and Hall  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
bihomogeneous polynomials  
dc.subject
syzygies  
dc.subject
free resolutions  
dc.subject
Koszul complex  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A case study in bigraded commutative algebra  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-09-03T19:01:03Z  
dc.journal.pagination
67-111  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Boca Raton  
dc.description.fil
Fil: Cox, David. Amherst College. Department of Mathematics and Computer Science; Estados Unidos  
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Schenk, Hal. Texas A&M University; Estados Unidos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0409462  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.taylorfrancis.com/chapters/case-study-bigraded-commutative-algebra-david-cox-alicia-dickenstein-hal-schenck/e/10.1201/9781420050912-6  
dc.conicet.paginas
304  
dc.source.titulo
Syzygies and Hilbert functions