Artículo
The best Sobolev trace constant in domains with holes for critical or subcritical exponents
Fecha de publicación:
12/2007
Editorial:
Cambridge University Press
Revista:
Anziam Journal
ISSN:
1446-1811
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 < q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary.
Palabras clave:
HOMOGENIZATION
,
NONLINEAR BOUNDARY CONDITIONS
,
SOBOLEV TRACE EMBEDDING.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Fernandez Bonder, Julian; Orive, R.; Rossi, Julio Daniel; The best Sobolev trace constant in domains with holes for critical or subcritical exponents; Cambridge University Press; Anziam Journal; 49; 2; 12-2007; 213-230
Compartir
Altmétricas