Mostrar el registro sencillo del ítem
dc.contributor.author
Carando, Daniel Germán

dc.contributor.author
Muro, Luis Santiago Miguel

dc.date.available
2021-03-04T19:05:53Z
dc.date.issued
2012-02
dc.identifier.citation
Carando, Daniel Germán; Muro, Luis Santiago Miguel; Envelopes of holomorphy and extension of functions of bounded type; Academic Press Inc Elsevier Science; Advances in Mathematics; 229; 3; 2-2012; 2098-2121
dc.identifier.issn
0001-8708
dc.identifier.uri
http://hdl.handle.net/11336/127504
dc.description.abstract
We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ENVELOPE OF HOLOMORPHY
dc.subject
HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE
dc.subject
RIEMANN DOMAINS
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Envelopes of holomorphy and extension of functions of bounded type
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-09-03T16:57:36Z
dc.journal.volume
229
dc.journal.number
3
dc.journal.pagination
2098-2121
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Advances in Mathematics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aim.2011.10.019
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870811003732
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0904.2384
Archivos asociados