Artículo
Optimal Canny's Parameters Regressions for Coastal Line Detection in Satellite-Based SAR Images
Fecha de publicación:
01/2020
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
Ieee Geoscience and Remote Sensing Letters
ISSN:
1545-598X
e-ISSN:
1558-0571
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Canny's algorithm is a very well-known and widely implemented multistage edge detector. The extraction of coastal lines in space-borne-based synthetic aperture radar (SAR) images using this algorithm is particularly complicated because of the multiplicative speckle noise present in them and can only be used if Canny's parameters (CaPP) are chosen appropriately. This letter introduces a methodology for computing functional forms for the CaPP, using functions of the image characteristics through a system that combines artificial neural networks (ANN) with statistical regression. A set of CaPP functional forms is obtained by applying this method on synthetic SAR images. Pratt's figure of merit (PFoM) is used to measure the performance of them, obtaining more than 0.75, on average, in the 14400 synthetic SAR images analyzed. Finally, this set of formulas has been tested for extracting coastal edges from real polynyas SAR images, acquired from Sentinel-1.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Nemer Pelliza, Karim Alejandra; Pucheta, Martín Alejo; Flesia, Ana Georgina; Optimal Canny's Parameters Regressions for Coastal Line Detection in Satellite-Based SAR Images; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 17; 1; 1-2020; 82-86
Compartir
Altmétricas