Mostrar el registro sencillo del ítem

dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Sole Casals, Jordi  
dc.contributor.author
Marti Puig, Pere  
dc.contributor.author
Sun, Zhe  
dc.contributor.author
Tanaka,Toshihisa  
dc.date.available
2021-03-04T15:59:37Z  
dc.date.issued
2020-11  
dc.identifier.citation
Caiafa, César Federico; Sole Casals, Jordi; Marti Puig, Pere; Sun, Zhe; Tanaka,Toshihisa; Decomposition methods for machine learning with small, incomplete or noisy datasets; MDPI; Applied Sciences; 10; 23; 11-2020; 1-21  
dc.identifier.issn
2076-3417  
dc.identifier.uri
http://hdl.handle.net/11336/127445  
dc.description.abstract
In many machine learning applications, measurements are sometimes incomplete or noisy resulting in missing features. In other cases, and for different reasons, the datasets are originally small, and therefore, more data samples are required to derive useful supervised or unsupervised classification methods. Correct handling of incomplete, noisy or small datasets in machine learning is a fundamental and classic challenge. In this article, we provide a unified review of recently proposed methods based on signal decomposition for missing features imputation (data completion), classification of noisy samples and artificial generation of new data samples (data augmentation). We illustrate the application of these signal decomposition methods in diverse selected practical machine learning examples including: brain computer interface, epileptic intracranial electroencephalogram signals classification, face recognition/verification and water networks data analysis. We show that a signal decomposition approach can provide valuable tools to improve machine learning performance with low quality datasets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
empirical mode decomposition  
dc.subject
machine learning  
dc.subject
sparse representation  
dc.subject
tensor decomposition  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Decomposition methods for machine learning with small, incomplete or noisy datasets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-01-18T15:43:52Z  
dc.journal.volume
10  
dc.journal.number
23  
dc.journal.pagination
1-21  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Sole Casals, Jordi. Center for Advanced Intelligence; Japón  
dc.description.fil
Fil: Marti Puig, Pere. University of Catalonia; España  
dc.description.fil
Fil: Sun, Zhe. RIKEN; Japón  
dc.description.fil
Fil: Tanaka,Toshihisa. Tokyo University of Agriculture and Technology; Japón  
dc.journal.title
Applied Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/10/23/8481  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/app10238481