Mostrar el registro sencillo del ítem
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Sole Casals, Jordi
dc.contributor.author
Marti Puig, Pere
dc.contributor.author
Sun, Zhe
dc.contributor.author
Tanaka,Toshihisa
dc.date.available
2021-03-04T15:59:37Z
dc.date.issued
2020-11
dc.identifier.citation
Caiafa, César Federico; Sole Casals, Jordi; Marti Puig, Pere; Sun, Zhe; Tanaka,Toshihisa; Decomposition methods for machine learning with small, incomplete or noisy datasets; MDPI; Applied Sciences; 10; 23; 11-2020; 1-21
dc.identifier.issn
2076-3417
dc.identifier.uri
http://hdl.handle.net/11336/127445
dc.description.abstract
In many machine learning applications, measurements are sometimes incomplete or noisy resulting in missing features. In other cases, and for different reasons, the datasets are originally small, and therefore, more data samples are required to derive useful supervised or unsupervised classification methods. Correct handling of incomplete, noisy or small datasets in machine learning is a fundamental and classic challenge. In this article, we provide a unified review of recently proposed methods based on signal decomposition for missing features imputation (data completion), classification of noisy samples and artificial generation of new data samples (data augmentation). We illustrate the application of these signal decomposition methods in diverse selected practical machine learning examples including: brain computer interface, epileptic intracranial electroencephalogram signals classification, face recognition/verification and water networks data analysis. We show that a signal decomposition approach can provide valuable tools to improve machine learning performance with low quality datasets.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
empirical mode decomposition
dc.subject
machine learning
dc.subject
sparse representation
dc.subject
tensor decomposition
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Decomposition methods for machine learning with small, incomplete or noisy datasets
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-01-18T15:43:52Z
dc.journal.volume
10
dc.journal.number
23
dc.journal.pagination
1-21
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Sole Casals, Jordi. Center for Advanced Intelligence; Japón
dc.description.fil
Fil: Marti Puig, Pere. University of Catalonia; España
dc.description.fil
Fil: Sun, Zhe. RIKEN; Japón
dc.description.fil
Fil: Tanaka,Toshihisa. Tokyo University of Agriculture and Technology; Japón
dc.journal.title
Applied Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/10/23/8481
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/app10238481
Archivos asociados