Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Optimal shift invariant spaces and their Parseval frame generators

Aldroubi, Akram; Cabrelli, CarlosIcon ; Hardin, Douglas; Molter, Ursula MariaIcon
Fecha de publicación: 09/2007
Editorial: Academic Press Inc Elsevier Science
Revista: Applied And Computational Harmonic Analysis
ISSN: 1063-5203
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Given a set of functions F = {f1, ..., fm} ⊂ L2 (Rd), we study the problem of finding the shift-invariant space V with n generators {φ1, ..., φn} that is "closest" to the functions of F in the sense thatV = under(arg min, V′ ∈ Vn) underover(∑, i = 1, m) wi {norm of matrix} fi - PV′ fi {norm of matrix}2, where wis are positive weights, and Vn is the set of all shift-invariant spaces that can be generated by n or less generators. The Eckart-Young theorem uses the singular value decomposition to provide a solution to a related problem in finite dimension. We transform the problem under study into an uncountable set of finite dimensional problems each of which can be solved using an extension of the Eckart-Young theorem. We prove that the finite dimensional solutions can be patched together and transformed to obtain the optimal shift-invariant space solution to the original problem, and we produce a Parseval frame for the optimal space. A typical application is the problem of finding a shift-invariant space model that describes a given class of signals or images (e.g., the class of chest X-rays), from the observation of a set of m signals or images f1, ..., fm, which may be theoretical samples, or experimental data.
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 241.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/127439
URL: https://www.sciencedirect.com/science/article/pii/S1063520307000504
DOI: https://doi.org/10.1016/j.acha.2007.05.001
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Aldroubi, Akram; Cabrelli, Carlos; Hardin, Douglas; Molter, Ursula Maria; Optimal shift invariant spaces and their Parseval frame generators; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 23; 2; 9-2007; 273-283
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES