Mostrar el registro sencillo del ítem

dc.contributor.author
Romero, José Rodolfo  
dc.contributor.author
Roncallo, Pablo Federico  
dc.contributor.author
Akkiraju, Pavan C.  
dc.contributor.author
Ponzoni, Ignacio  
dc.contributor.author
Echenique, Carmen Viviana  
dc.contributor.author
Carballido, Jessica Andrea  
dc.date.available
2017-02-08T20:45:50Z  
dc.date.issued
2013-05  
dc.identifier.citation
Romero, José Rodolfo; Roncallo, Pablo Federico; Akkiraju, Pavan C.; Ponzoni, Ignacio; Echenique, Carmen Viviana; et al.; Using classification algorithms for predicting durum wheat yield in the province of Buenos Aires; Elsevier; Computers And Eletronics In Agriculture; 96; 5-2013; 173-179  
dc.identifier.issn
0168-1699  
dc.identifier.uri
http://hdl.handle.net/11336/12720  
dc.description.abstract
Wheat is one of the most important cereals worldwide for human nutrition. Tetraploid wheat (Triticum turgidum L. ssp. durum, 2n = 28, genomes AABB) is mainly used to produce pasta. The main objective of durum wheat breeding programs is to develop varieties with good quality and high yields. Yield is a very complex trait, and depends on different yield components that are genetically controlled and affected by environmental constraints. In this context, machine learning constitutes an excellent alternative for the analysis of a high number of traits in order to extract the most relevant ones as confident predictors of the performance of this crop, allowing a better agricultural planning. Thus, we propose the use of machine learning algorithms for the classification of yield components and for the search of new rules to infer high yields at harvest of durum wheat. The main objective of this work was to obtain rules for predicting durum wheat yield through different machine learning algorithms, and compare them to detect the one that best fits the model. In order to achieve this goal, One-R, J48, Ibk and A priori algorithms were run with data collected by our research group of a RIL (recombinant inbreed lines) population growing in six different environments from the Province of Buenos Aires in Argentina. The results indicate that the A priori method obtains the best performance for all locations, and the classificators generated using the different algorithms share a common set of selected traits. Moreover, comparing these results with the previous ones obtained using different techniques, mainly QTL mapping, the traits indicated to be the most significant ones were the same. The analysis of the resulting rules shows the soundness in the agronomic relevance of the extracted knowledge.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Machine Learning  
dc.subject
Expert System  
dc.subject
Classification Algorithm  
dc.subject
Yield  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Using classification algorithms for predicting durum wheat yield in the province of Buenos Aires  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-12-01T19:40:40Z  
dc.journal.volume
96  
dc.journal.pagination
173-179  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Romero, José Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); Argentina  
dc.description.fil
Fil: Roncallo, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); Argentina. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Akkiraju, Pavan C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); Argentina. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Ponzoni, Ignacio. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina  
dc.description.fil
Fil: Echenique, Carmen Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); Argentina. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida(i); Argentina  
dc.journal.title
Computers And Eletronics In Agriculture  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168169913001257  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compag.2013.05.006