Artículo
A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence
Chantre Balacca, Guillermo Ruben
; Blanco, Anibal Manuel
; Forcella, F.; Van Acker, R. C.; Sabbatini, Mario Ricardo
; González Andújar, J. L.
Fecha de publicación:
01/2013
Editorial:
Cambridge University Press
Revista:
Journal Of Agricultural Science
ISSN:
0021-8596
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Non-linear regression (NLR) techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks (ANNs) present interesting and alternative features for such modelling purposes. In the present work, a univariate hydrothermal-time based Weibull model and a bivariate (hydro-time and thermal-time) ANN were developed to study wild oat emergence under non-moisture restriction conditions using data from different locations worldwide. Results indicated a higher accuracy of the neural network in comparison with the NLR approach due to the improved descriptive capacity of thermal-time and the hydro-time as independent explanatory variables. The bivariate ANN model outperformed the con- ventional Weibull approach, in terms of RMSE of the test set, by 70·8%. These outcomes suggest the potential applicability of the proposed modelling approach in the design of weed management decision support systems.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CERZOS)
Articulos de CENTRO REC.NAT.RENOVABLES DE ZONA SEMIARIDA(I)
Articulos de CENTRO REC.NAT.RENOVABLES DE ZONA SEMIARIDA(I)
Citación
Chantre Balacca, Guillermo Ruben; Blanco, Anibal Manuel; Forcella, F.; Van Acker, R. C.; Sabbatini, Mario Ricardo; et al.; A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence; Cambridge University Press; Journal Of Agricultural Science; 152; 2; 1-2013; 254-262
Compartir
Altmétricas