Mostrar el registro sencillo del ítem

dc.contributor.author
Allegrini, Franco  
dc.contributor.author
Olivieri, Alejandro Cesar  
dc.date.available
2021-03-01T19:12:02Z  
dc.date.issued
2011-08  
dc.identifier.citation
Allegrini, Franco; Olivieri, Alejandro Cesar; A new and efficient variable selection algorithm based on ant colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis; Elsevier Science; Analytica Chimica Acta; 699; 1; 8-2011; 18-25  
dc.identifier.issn
0003-2670  
dc.identifier.uri
http://hdl.handle.net/11336/127061  
dc.description.abstract
A new variable selection algorithm is described, based on ant colony optimization (ACO). The algorithm aim is to choose, from a large number of available spectral wavelengths, those relevant to the estimation of analyte concentrations or sample properties when spectroscopic analysis is combined with multivariate calibration techniques such as partial least-squares (PLS) regression. The new algorithm employs the concept of cooperative pheromone accumulation, which is typical of ACO selection methods, and optimizes PLS models using a pre-defined number of variables, employing a Monte Carlo approach to discard irrelevant sensors. The performance has been tested on a simulated system, where it shows a significant superiority over other commonly employed selection methods, such as genetic algorithms. Several near infrared spectroscopic experimental data sets have been subjected to the present ACO algorithm, with PLS leading to improved analytical figures of merit upon wavelength selection. The method could be helpful in other chemometric activities such as classification or quantitative structure-activity relationship (QSAR) problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANT COLONY OPTIMIZATION  
dc.subject
NEAR INFRARED SPECTROSCOPY  
dc.subject
PARTIAL LEAST-SQUARES REGRESSION  
dc.subject
VARIABLE SELECTION  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A new and efficient variable selection algorithm based on ant colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-22T15:49:42Z  
dc.journal.volume
699  
dc.journal.number
1  
dc.journal.pagination
18-25  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina  
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina  
dc.journal.title
Analytica Chimica Acta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0003267011006209  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aca.2011.04.061