Mostrar el registro sencillo del ítem
dc.contributor.author
Allegrini, Franco
dc.contributor.author
Olivieri, Alejandro Cesar
dc.date.available
2021-03-01T19:12:02Z
dc.date.issued
2011-08
dc.identifier.citation
Allegrini, Franco; Olivieri, Alejandro Cesar; A new and efficient variable selection algorithm based on ant colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis; Elsevier Science; Analytica Chimica Acta; 699; 1; 8-2011; 18-25
dc.identifier.issn
0003-2670
dc.identifier.uri
http://hdl.handle.net/11336/127061
dc.description.abstract
A new variable selection algorithm is described, based on ant colony optimization (ACO). The algorithm aim is to choose, from a large number of available spectral wavelengths, those relevant to the estimation of analyte concentrations or sample properties when spectroscopic analysis is combined with multivariate calibration techniques such as partial least-squares (PLS) regression. The new algorithm employs the concept of cooperative pheromone accumulation, which is typical of ACO selection methods, and optimizes PLS models using a pre-defined number of variables, employing a Monte Carlo approach to discard irrelevant sensors. The performance has been tested on a simulated system, where it shows a significant superiority over other commonly employed selection methods, such as genetic algorithms. Several near infrared spectroscopic experimental data sets have been subjected to the present ACO algorithm, with PLS leading to improved analytical figures of merit upon wavelength selection. The method could be helpful in other chemometric activities such as classification or quantitative structure-activity relationship (QSAR) problems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ANT COLONY OPTIMIZATION
dc.subject
NEAR INFRARED SPECTROSCOPY
dc.subject
PARTIAL LEAST-SQUARES REGRESSION
dc.subject
VARIABLE SELECTION
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A new and efficient variable selection algorithm based on ant colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-12-22T15:49:42Z
dc.journal.volume
699
dc.journal.number
1
dc.journal.pagination
18-25
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
dc.journal.title
Analytica Chimica Acta
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0003267011006209
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aca.2011.04.061
Archivos asociados