Mostrar el registro sencillo del ítem
dc.contributor.author
Cerretani, Lorenzo
dc.contributor.author
Maggio, Ruben Mariano
dc.contributor.author
Barnaba, Carlo
dc.contributor.author
Gallina Toschi, Tullia
dc.contributor.author
Chiavaro, Emma
dc.date.available
2021-03-01T19:08:42Z
dc.date.issued
2011-08
dc.identifier.citation
Cerretani, Lorenzo; Maggio, Ruben Mariano; Barnaba, Carlo; Gallina Toschi, Tullia; Chiavaro, Emma; Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil; Elsevier; Food Chemistry; 127; 4; 8-2011; 1899-1904
dc.identifier.issn
0308-8146
dc.identifier.uri
http://hdl.handle.net/11336/127059
dc.description.abstract
A chemometric approach based on partial least (PLS) square methodology was applied to unfolded differential scanning calorimetry data obtained by 63 samples of different vegetable oils (58 extra virgin olive oils, one olive and one pomace olive oil, three seed oils) to evaluate fatty acid composition (palmitic, stearic, oleic and linoleic acids, saturated (SFA), mono (MUFA) and polysaturated (PUFA) percentages, oleic/linoleic and unsaturated/saturated ratios). All calibration models exhibited satisfactory figures of merit. Palmitic and oleic acids, as well as SFA showed very good correlation coefficients and low root mean square error values in both calibration and validation sets. Satisfactory results were also obtained for MUFA, PUFA, stearic and linoleic acids, O/L ratio in terms of percentage recoveries and relative standard deviations. No systematic and bias errors were detected in the prediction of validation samples. This novel approach could provide statistically similar results to those given by traditional official procedures, with the advantages of a very rapid and environmentally friendly methodology.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DIFFERENTIAL SCANNING CALORIMETRY
dc.subject
FATTY ACID
dc.subject
OLIVE OIL
dc.subject
PARTIAL LEAST SQUARE REGRESSION
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-12-22T15:48:18Z
dc.journal.volume
127
dc.journal.number
4
dc.journal.pagination
1899-1904
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Cerretani, Lorenzo. Universidad de Bologna; Italia
dc.description.fil
Fil: Maggio, Ruben Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
dc.description.fil
Fil: Barnaba, Carlo. Università di Parma; Italia
dc.description.fil
Fil: Gallina Toschi, Tullia. Universidad de Bologna; Italia
dc.description.fil
Fil: Chiavaro, Emma. Università di Parma; Italia
dc.journal.title
Food Chemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0308814611002998
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.foodchem.2011.02.041
Archivos asociados