Mostrar el registro sencillo del ítem

dc.contributor.author
Cerretani, Lorenzo  
dc.contributor.author
Maggio, Ruben Mariano  
dc.contributor.author
Barnaba, Carlo  
dc.contributor.author
Gallina Toschi, Tullia  
dc.contributor.author
Chiavaro, Emma  
dc.date.available
2021-03-01T19:08:42Z  
dc.date.issued
2011-08  
dc.identifier.citation
Cerretani, Lorenzo; Maggio, Ruben Mariano; Barnaba, Carlo; Gallina Toschi, Tullia; Chiavaro, Emma; Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil; Elsevier; Food Chemistry; 127; 4; 8-2011; 1899-1904  
dc.identifier.issn
0308-8146  
dc.identifier.uri
http://hdl.handle.net/11336/127059  
dc.description.abstract
A chemometric approach based on partial least (PLS) square methodology was applied to unfolded differential scanning calorimetry data obtained by 63 samples of different vegetable oils (58 extra virgin olive oils, one olive and one pomace olive oil, three seed oils) to evaluate fatty acid composition (palmitic, stearic, oleic and linoleic acids, saturated (SFA), mono (MUFA) and polysaturated (PUFA) percentages, oleic/linoleic and unsaturated/saturated ratios). All calibration models exhibited satisfactory figures of merit. Palmitic and oleic acids, as well as SFA showed very good correlation coefficients and low root mean square error values in both calibration and validation sets. Satisfactory results were also obtained for MUFA, PUFA, stearic and linoleic acids, O/L ratio in terms of percentage recoveries and relative standard deviations. No systematic and bias errors were detected in the prediction of validation samples. This novel approach could provide statistically similar results to those given by traditional official procedures, with the advantages of a very rapid and environmentally friendly methodology.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIFFERENTIAL SCANNING CALORIMETRY  
dc.subject
FATTY ACID  
dc.subject
OLIVE OIL  
dc.subject
PARTIAL LEAST SQUARE REGRESSION  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-22T15:48:18Z  
dc.journal.volume
127  
dc.journal.number
4  
dc.journal.pagination
1899-1904  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Cerretani, Lorenzo. Universidad de Bologna; Italia  
dc.description.fil
Fil: Maggio, Ruben Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina  
dc.description.fil
Fil: Barnaba, Carlo. Università di Parma; Italia  
dc.description.fil
Fil: Gallina Toschi, Tullia. Universidad de Bologna; Italia  
dc.description.fil
Fil: Chiavaro, Emma. Università di Parma; Italia  
dc.journal.title
Food Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0308814611002998  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.foodchem.2011.02.041