Mostrar el registro sencillo del ítem

dc.contributor.author
Celani, Sergio Arturo  
dc.date.available
2021-03-01T17:34:35Z  
dc.date.issued
2019-03  
dc.identifier.citation
Celani, Sergio Arturo; Complete and atomic Tarski algebras; Springer; Archive for Mathematical Logic; 58; 7-8; 3-2019; 899-914  
dc.identifier.issn
0933-5846  
dc.identifier.uri
http://hdl.handle.net/11336/127025  
dc.description.abstract
Tarski algebras, also known as implication algebras or semi-boolean algebras, are the {→}-subreducts of Boolean algebras. In this paper we shall introduce and study the complete and atomic Tarski algebras. We shall prove a duality between the complete and atomic Tarski algebras and the class of covering Tarski sets, i.e., structuresX, K , where X is a non-empty set and K is non-empty family of subsets of X such that K = X. This duality is a generalization of the known duality between sets and complete and atomic Boolean algebras. We shall also analize the case of complete and atomic Tarski algebras endowed with a complete modal operator, and we will prove a duality for these algebras.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
TARSKI ALGEBRAS  
dc.subject
TARSKI SETS  
dc.subject
REPRESENTATION THEOREM  
dc.subject
COMPLETE AND ATOMIC TARSKI ALGEBRAS  
dc.subject
MODAL OPERATOR  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Complete and atomic Tarski algebras  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-04T18:13:15Z  
dc.identifier.eissn
1432-0665  
dc.journal.volume
58  
dc.journal.number
7-8  
dc.journal.pagination
899-914  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.journal.title
Archive for Mathematical Logic  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00153-019-00666-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00153-019-00666-x