Mostrar el registro sencillo del ítem

dc.contributor.author
Koelink, Erik  
dc.contributor.author
van Pruijssen, Maarten  
dc.contributor.author
Román, Pablo Manuel  
dc.date.available
2021-03-01T15:25:05Z  
dc.date.issued
2020-04-15  
dc.identifier.citation
Koelink, Erik; van Pruijssen, Maarten; Román, Pablo Manuel; Matrix elements of irreducible representations of SU(n + 1)×SU(n + 1) and multivariable matrix-valued orthogonal polynomials; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 278; 7; 15-4-2020  
dc.identifier.issn
0022-1236  
dc.identifier.uri
http://hdl.handle.net/11336/126981  
dc.description.abstract
In Part 1 we study the spherical functions on compact symmetric pairs of arbitrary rank under a suitable multiplicity freeness assumption and additional conditions on the branching rules. The spherical functions are taking values in the spaces of linear operators of a finite dimensional representation of the subgroup, so the spherical functions are matrix-valued. Under these assumptions these functions can be described in terms of matrix-valued orthogonal polynomials in several variables, where the number of variables is the rank of the compact symmetric pair. Moreover, these polynomials are uniquely determined as simultaneous eigenfunctions of a commutative algebra of differential operators. In Part 2 we verify that the group case SU(n+1) meets all the conditions that we impose in Part 1. For any k∈N0 we obtain families of orthogonal polynomials in n variables with values in the N×N-matrices, where N=(n+kk). The case k=0 leads to the classical Heckman-Opdam polynomials of type An with geometric parameter. For k=1 we obtain the most complete results. In this case we give an explicit expression of the matrix weight, which we show to be irreducible whenever n≥2. We also give explicit expressions of the spherical functions that determine the matrix weight for k=1. These expressions are used to calculate the spherical functions that determine the matrix weight for general k up to invertible upper-triangular matrices. This generalizes and gives a new proof of a formula originally obtained by Koornwinder for the case n=1. The commuting family of differential operators that have the matrix-valued polynomials as simultaneous eigenfunctions contains an element of order one. We give explicit formulas for differential operators of order one and two for (n,k) equal to (2,1) and (3,1).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BRANCHING RULES  
dc.subject
MULTI-VARIABLE MATRIX-VALUED ORTHOGONAL POLYNOMIALS  
dc.subject
SPHERICAL FUNCTIONS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Matrix elements of irreducible representations of SU(n + 1)×SU(n + 1) and multivariable matrix-valued orthogonal polynomials  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-19T21:17:06Z  
dc.journal.volume
278  
dc.journal.number
7  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Koelink, Erik. Radboud Universiteit Nijmegen; Países Bajos  
dc.description.fil
Fil: van Pruijssen, Maarten. Universität Paderborn; Alemania  
dc.description.fil
Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Journal of Functional Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jfa.2019.108411  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022123619304057?via%3Dihub