Mostrar el registro sencillo del ítem
dc.contributor.author
Fernández Ferreyra, Damián Roberto
dc.contributor.author
Solodov, Mikhail
dc.date.available
2021-02-26T20:38:22Z
dc.date.issued
2020-07
dc.identifier.citation
Fernández Ferreyra, Damián Roberto; Solodov, Mikhail; On the cost of solving augmented Lagrangian subproblems; Springer; Mathematical Programming; 182; 1-2; 7-2020; 37-55
dc.identifier.issn
0025-5610
dc.identifier.uri
http://hdl.handle.net/11336/126878
dc.description.abstract
At each iteration of the augmented Lagrangian algorithm, a nonlinear subproblem is being solved. The number of inner iterations (of some/any method) needed to obtain a solution of the subproblem, or even a suitable approximate stationary point, is in principle unknown. In this paper we show that to compute an approximate stationary point sufficient to guarantee local superlinear convergence of the augmented Lagrangian iterations, it is enough to solve two quadratic programming problems (or two linear systems in the equality-constrained case). In other words, two inner Newtonian iterations are sufficient. To the best of our knowledge, such results are not available even under the strongest assumptions (of second-order sufficiency, strict complementarity, and the linear independence constraint qualification). Our analysis is performed under second-order sufficiency only, which is the weakest assumption for obtaining local convergence and rate of convergence of outer iterations of the augmented Lagrangian algorithm. The structure of the quadratic problems in question is related to the stabilized sequential quadratic programming and to second-order corrections.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUGMENTED LAGRANGIAN
dc.subject
NEWTON METHODS
dc.subject
SECOND-ORDER CORRECTION
dc.subject
STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING
dc.subject
SUPERLINEAR CONVERGENCE
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On the cost of solving augmented Lagrangian subproblems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-19T21:20:47Z
dc.journal.volume
182
dc.journal.number
1-2
dc.journal.pagination
37-55
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Fernández Ferreyra, Damián Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Solodov, Mikhail. Conselho Nacional de Desenvolvimento Científico e Tecnológico. Associacao Instituto Nacional de Matemática Pura e Aplicada; Brasil
dc.journal.title
Mathematical Programming
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10107-019-01384-1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10107-019-01384-1
Archivos asociados