Artículo
Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation
Hernandez, S. M.; Bonetti, Juan Ignacio
; Linale, Nicolás Martín
; Grosz, Diego Fernando
; Fierens, Pablo Ignacio
Fecha de publicación:
12/2020
Editorial:
Taylor & Francis Ltd
Revista:
Waves In Random And Complex Media
ISSN:
1745-5030
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We have recently introduced a new modeling equation for the propagation of pulses in optical waveguides, the photon-conserving Nonlinear Schrödinger Equation (pcNLSE) which, unlike the canonical NLSE, guarantees strict conservation of both the energy and the number of photons for any arbitrary frequency-dependent nonlinearity. In this paper, we analyze some properties of this new equation in the familiar case where the nonlinear coefficient of the waveguide does not change sign. We show that the pcNLSE effectively adds a correction term to the NLSE proportional to the deviation of the self-steepening (SS) parameter from the photon-conserving condition in the NLSE. Furthermore, we describe the role of the self-steepening parameter in the context of the conservation of the number of photons and derive an analytical expression for the relation of the SS parameter with the time delay experienced by pulses upon propagation. Finally, we put forth soliton-like solutions of the pcNLSE that, unlike NLSE solitons, conserve the number of photons for any arbitrary SS parameter.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Hernandez, S. M.; Bonetti, Juan Ignacio; Linale, Nicolás Martín; Grosz, Diego Fernando; Fierens, Pablo Ignacio; Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation; Taylor & Francis Ltd; Waves In Random And Complex Media; 2020; 12-2020; 1-17
Compartir
Altmétricas