Mostrar el registro sencillo del ítem
dc.contributor.author
Shakarian, Paulo
dc.contributor.author
Simari, Gerardo
dc.contributor.author
Falappa, Marcelo Alejandro
dc.date.available
2017-02-07T15:30:10Z
dc.date.issued
2014-12
dc.identifier.citation
Shakarian, Paulo ; Simari, Gerardo ; Falappa, Marcelo Alejandro; Belief Revision in Structured Probabilistic Argumentation; Springer; Lecture Notes In Computer Science; 8367; 12-2014; 324-343
dc.identifier.issn
0302-9743
dc.identifier.uri
http://hdl.handle.net/11336/12636
dc.description.abstract
In real-world applications, knowledge bases consisting of all the information at hand for a specific domain, along with the current state of affairs, are bound to contain contradictory data coming from different sources, as well as data with varying degrees of uncertainty attached. Likewise, an important aspect of the effort associated with maintaining knowledge bases is deciding what information is no longer useful; pieces of information (such as intelligence reports) may be outdated, may come from sources that have recently been discovered to be of low quality, or abundant evidence may be available that contradicts them. In this paper, we propose a probabilistic structured argumentation framework that arises from the extension of Presumptive Defeasible Logic Programming (PreDeLP) with probabilistic models, and argue that this formalism is capable of addressing the basic issues of handling contradictory and uncertain data. Then, to address the last issue, we focus on the study of non-prioritized belief revision operations over probabilistic PreDeLP programs. We propose a set of rationality postulates – based on well-known ones developed for classical knowledge bases – that characterize how such operations should behave, and study a class of operators along with theoretical relationships with the proposed postulates, including a representation theorem stating the equivalence between this class and the class of operators characterized by the postulates.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Belief Revision
dc.subject
Probabilistic Argumentation
dc.subject
Cybersecurity
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Belief Revision in Structured Probabilistic Argumentation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-02-02T14:07:29Z
dc.identifier.eissn
1573-7470
dc.journal.volume
8367
dc.journal.pagination
324-343
dc.journal.pais
Suiza
dc.description.fil
Fil: Shakarian, Paulo . U.S. Military Academy. Department of Electrical Engineering and Computer Science; Estados Unidos
dc.description.fil
Fil: Simari, Gerardo . University of Oxford; Reino Unido
dc.description.fil
Fil: Falappa, Marcelo Alejandro. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Lecture Notes In Computer Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007/978-3-319-04939-7_16
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-04939-7_16
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1401.1475
Archivos asociados