Artículo
Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?
Fecha de publicación:
02/2019
Editorial:
Elsevier
Revista:
Linear Algebra and its Applications
ISSN:
0024-3795
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We characterize the sets of norm one vectors x1, ..., xk in a Hilbert space H such that there exists a k-linear symmetric form attaining its norm at (x1, ..., xk). We prove that in the bilinear case, any two vectors satisfy this property. However, for k ≥ 3 only collinear vectors satisfy this property in the complex case, while in the real case this is equivalent to x1, ..., xk spanning a subspace of dimension at most 2. We use these results to obtain some applications to symmetric multilinear forms, symmetric tensor products and the exposed points of the unit ball of Ls(kH).
Palabras clave:
HILBERT SPACES
,
MULTILINEAR FORMS
,
NORM ATTAINING MAPPINGS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Carando, Daniel Germán; Rodríguez, Jorge Tomás; Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?; Elsevier; Linear Algebra and its Applications; 563; 2-2019; 178-192
Compartir
Altmétricas