Mostrar el registro sencillo del ítem
dc.contributor.author
Balazs, Peter
dc.contributor.author
Heineken, Sigrid Bettina
dc.date.available
2021-02-22T15:11:55Z
dc.date.issued
2019-05-20
dc.identifier.citation
Balazs, Peter; Heineken, Sigrid Bettina; An operator based approach to irregular frames of translates; Multidisciplinary Digital Publishing Institute; Mathematics; 7; 5; 20-5-2019; 1-11
dc.identifier.issn
2227-7390
dc.identifier.uri
http://hdl.handle.net/11336/126225
dc.description.abstract
We consider translates of functions in L 2 (Rd ) along an irregular set of points, that is, {φ(· − λk )}k∈Z—where φ is a bandlimited function. Introducing a notion of pseudo-Gramian function for the irregular case, we obtain conditions for a family of irregular translates to be a Bessel, frame or Riesz sequence. We show the connection of the frame-related operators of the translates to the operators of exponentials. This is used, in particular, to find for the first time in the irregular case a representation of the canonical dual as well as of the equivalent Parseval frame—in terms of its Fourier transform.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Multidisciplinary Digital Publishing Institute
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
CANONICAL DUALS
dc.subject
FRAME-RELATED OPERATORS
dc.subject
FRAMES
dc.subject
IRREGULAR TRANSLATES
dc.subject
RIESZ BASES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An operator based approach to irregular frames of translates
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-18T17:34:45Z
dc.journal.volume
7
dc.journal.number
5
dc.journal.pagination
1-11
dc.journal.pais
Suiza
dc.description.fil
Fil: Balazs, Peter. Austrian Academy of Sciences; Austria
dc.description.fil
Fil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/7/5/449
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/math7050449
Archivos asociados