Mostrar el registro sencillo del ítem

dc.contributor.author
Barreiro Gomez, Julian  
dc.contributor.author
Ocampo Martínez, Carlos  
dc.contributor.author
Bianchi, Fernando Daniel  
dc.contributor.author
Quijano, Nicanor  
dc.date.available
2021-02-19T18:53:19Z  
dc.date.issued
2019-03  
dc.identifier.citation
Barreiro Gomez, Julian; Ocampo Martínez, Carlos; Bianchi, Fernando Daniel; Quijano, Nicanor; Data-driven decentralized algorithm for wind farm control with population-games assistance; Multidisciplinary Digital Publishing Institute; Energies; 12; 6; 3-2019; 1-14  
dc.identifier.uri
http://hdl.handle.net/11336/126135  
dc.description.abstract
In wind farms, the interaction between turbines that operate close by experience some problems in terms of their power generation. Wakes caused by upstream turbines are mainly responsible of these interactions, and the phenomena involved in this case is complex especially when the number of turbines is high. In order to deal with these issues, there is a need to develop control strategies that maximize the energy captured from a wind farm. In this work, an algorithm that uses multiple estimated gradients based on measurements that are classified by using a simple distributed population-games-based algorithm is proposed. The update in the decision variables is computed by making a superposition of the estimated gradients together with the classification of the measurements. In order to maximize the energy captured and maintain the individual power generation, several constraints are considered in the proposed algorithm. Basically, the proposed control scheme reduces the communications needed, which increases the reliability of the wind farm operation. The control scheme is validated in simulation in a benchmark corresponding to the Horns Rev wind farm.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Multidisciplinary Digital Publishing Institute  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DATA-DRIVEN CONTROL STRATEGY  
dc.subject
WIND TURBINES  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Data-driven decentralized algorithm for wind farm control with population-games assistance  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-02-09T18:48:56Z  
dc.identifier.eissn
1996-1073  
dc.journal.volume
12  
dc.journal.number
6  
dc.journal.pagination
1-14  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Barreiro Gomez, Julian. New York University Abu Dhabi; Emiratos Arabes Unidos  
dc.description.fil
Fil: Ocampo Martínez, Carlos. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Bianchi, Fernando Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Quijano, Nicanor. Universidad de los Andes; Colombia  
dc.journal.title
Energies  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/12/6/1164  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/en12061164