Mostrar el registro sencillo del ítem
dc.contributor.author
Barreiro Gomez, Julian
dc.contributor.author
Ocampo Martínez, Carlos
dc.contributor.author
Bianchi, Fernando Daniel
dc.contributor.author
Quijano, Nicanor
dc.date.available
2021-02-19T18:53:19Z
dc.date.issued
2019-03
dc.identifier.citation
Barreiro Gomez, Julian; Ocampo Martínez, Carlos; Bianchi, Fernando Daniel; Quijano, Nicanor; Data-driven decentralized algorithm for wind farm control with population-games assistance; Multidisciplinary Digital Publishing Institute; Energies; 12; 6; 3-2019; 1-14
dc.identifier.uri
http://hdl.handle.net/11336/126135
dc.description.abstract
In wind farms, the interaction between turbines that operate close by experience some problems in terms of their power generation. Wakes caused by upstream turbines are mainly responsible of these interactions, and the phenomena involved in this case is complex especially when the number of turbines is high. In order to deal with these issues, there is a need to develop control strategies that maximize the energy captured from a wind farm. In this work, an algorithm that uses multiple estimated gradients based on measurements that are classified by using a simple distributed population-games-based algorithm is proposed. The update in the decision variables is computed by making a superposition of the estimated gradients together with the classification of the measurements. In order to maximize the energy captured and maintain the individual power generation, several constraints are considered in the proposed algorithm. Basically, the proposed control scheme reduces the communications needed, which increases the reliability of the wind farm operation. The control scheme is validated in simulation in a benchmark corresponding to the Horns Rev wind farm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Multidisciplinary Digital Publishing Institute
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
DATA-DRIVEN CONTROL STRATEGY
dc.subject
WIND TURBINES
dc.subject.classification
Control Automático y Robótica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Data-driven decentralized algorithm for wind farm control with population-games assistance
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-02-09T18:48:56Z
dc.identifier.eissn
1996-1073
dc.journal.volume
12
dc.journal.number
6
dc.journal.pagination
1-14
dc.journal.pais
Suiza
dc.description.fil
Fil: Barreiro Gomez, Julian. New York University Abu Dhabi; Emiratos Arabes Unidos
dc.description.fil
Fil: Ocampo Martínez, Carlos. Universidad Politécnica de Catalunya; España
dc.description.fil
Fil: Bianchi, Fernando Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
dc.description.fil
Fil: Quijano, Nicanor. Universidad de los Andes; Colombia
dc.journal.title
Energies
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/12/6/1164
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/en12061164
Archivos asociados