Artículo
N-complexes as functors, amplitude cohomology and fusion rules
Fecha de publicación:
06/2007
Editorial:
Springer
Revista:
Communications In Mathematical Physics
ISSN:
0010-3616
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider N-complexes as functors over an appropriate linear category in order to show first that the Krull-Schmidt Theorem holds, then to prove that amplitude cohomology (called generalized cohomology by M. Dubois-Violette) only vanishes on injective functors providing a well defined functor on the stable category. For left truncated N-complexes, we show that amplitude cohomology discriminates the isomorphism class up to a projective functor summand. Moreover amplitude cohomology of positive N-complexes is proved to be isomorphic to an Ext functor of an indecomposable N-complex inside the abelian functor category. Finally we show that for the monoidal structure of N-complexes a Clebsch-Gordan formula holds, in other words the fusion rules for N-complexes can be determined.
Palabras clave:
N-COMPLEXES
,
KRULL-SCHMIDT THEOREM
,
AMPLITUDE COHOMOLOGY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cibils, Claude; Solotar, Andrea Leonor; Wisbauer, Robert; N-complexes as functors, amplitude cohomology and fusion rules; Springer; Communications In Mathematical Physics; 272; 3; 6-2007; 837-849
Compartir
Altmétricas