Mostrar el registro sencillo del ítem

dc.contributor.author
Firman, Leticia Raquel  
dc.contributor.author
Ochoa, Nelio Ariel  
dc.contributor.author
Marchese, Jose  
dc.contributor.author
Pagliero, Cecilia Liliana  
dc.date.available
2021-02-17T21:57:02Z  
dc.date.issued
2020-12  
dc.identifier.citation
Firman, Leticia Raquel; Ochoa, Nelio Ariel; Marchese, Jose; Pagliero, Cecilia Liliana; Designing of spiral wound nanofiltration multistage process for oil concentration and solvent recovery from soybean oil/n-hexane miscella; Institution of Chemical Engineers; Chemical Engineering Research & Design; 164; 12-2020; 46-58  
dc.identifier.issn
0263-8762  
dc.identifier.uri
http://hdl.handle.net/11336/125888  
dc.description.abstract
The present work demonstrates the potential of oil/n-hexane miscella separation from a local factory via a hybrid nanofiltration-evaporation process. In the membrane separation, solvent resistance nanofiltration (SRNF) membranes lab-made of polyvinylidene fluoride (PVDF) as support, poly-dimethylsiloxane (SI) or cellulose acetate (CA) as coating materials and a commercial composite membrane were used. To perform this study, a representative spiral-wound (SW) module made-up with the membranes previously mentioned was employed. For miscella mass transfer through the SW module, a plug-cross-mixing flow (PCMF) model was used. From experimental miscella permselectivity data at T = 30 °C and Δp = 20 bar, an analytical final expression of mass balance was obtained which correlated the retentate oil concentration with the membrane area. The multistage process of such membranes was integrated by a number of single-stage in series. In the multistage membrane performance evaluation, several restrictions were imposed on the model considering the operational conditions of the local factory that uses an evaporation and steam stripping process. Seven stage (total membrane area 702 m2) using PVDF-10% SI membrane gave the best oil/n-hexane separation effectiveness. From this, a hybrid SRNF-evaporation process was proposed in which the selected membrane multistage process replaced the first and the second evaporators. The permeate stream rich in n-hexane (90.5 w%) was fed to the section of the expeller in which the oil was depleted, and the retentate stream enriched in oil (86.7 w%) was pumped to the third-stage evaporator and strippers, where the oil was concentrated to >99 w%. The overall energy demand was significantly reduced (≈50%) and there was around 60% less consumption of cooling water and steam by the SRNF-assisted processes in comparison with the conventional factory evaporation process.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institution of Chemical Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MEMBRANE  
dc.subject
MISCELLA SOYBEAN OIL/N-HEXANE  
dc.subject
MULTISTAGE  
dc.subject
NANOFILTRATION  
dc.subject
RECOVERY SOLVENT  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Designing of spiral wound nanofiltration multistage process for oil concentration and solvent recovery from soybean oil/n-hexane miscella  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-01-27T19:52:36Z  
dc.journal.volume
164  
dc.journal.pagination
46-58  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Firman, Leticia Raquel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina  
dc.description.fil
Fil: Ochoa, Nelio Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.description.fil
Fil: Marchese, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.description.fil
Fil: Pagliero, Cecilia Liliana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina  
dc.journal.title
Chemical Engineering Research & Design  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0263876220304792  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cherd.2020.09.015