Artículo
Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis
Zarepour Nasir Abadi, Mahdi
; Perotti, Juan Ignacio
; Billoni, Orlando Vito
; Chialvo, Dante Renato
; Cannas, Sergio Alejandro
Fecha de publicación:
25/11/2019
Editorial:
American Physical Society
Revista:
Physical Review E
ISSN:
2470-0045
e-ISSN:
2470-0053
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the determination of its associated universality class. To circumvent that, here we study a neural model defined on a class of small-world networks that share some topological features with the human connectome. We find that varying the topological parameters can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state. Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain dynamics.
Palabras clave:
NEURAL NETWORKS
,
CRITICALITY
,
FINITE SIZE SCALING
,
SMALL WORLD NETWORKS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Zarepour Nasir Abadi, Mahdi; Perotti, Juan Ignacio; Billoni, Orlando Vito; Chialvo, Dante Renato; Cannas, Sergio Alejandro; Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis; American Physical Society; Physical Review E; 100; 5; 25-11-2019; 052138
Compartir
Altmétricas