Mostrar el registro sencillo del ítem

dc.contributor.author
Erban, Alexander  
dc.contributor.author
Fehrle, Ines  
dc.contributor.author
Martinez-Seidel, Federico  
dc.contributor.author
Brigante, Federico Iván  
dc.contributor.author
Lucini Mas, Agustín  
dc.contributor.author
Baroni, María Verónica  
dc.contributor.author
Wunderlin, Daniel Alberto  
dc.contributor.author
Kopka, Joachim  
dc.date.available
2021-02-16T14:31:40Z  
dc.date.issued
2019-12  
dc.identifier.citation
Erban, Alexander; Fehrle, Ines; Martinez-Seidel, Federico; Brigante, Federico Iván; Lucini Mas, Agustín; et al.; Discovery of food identity markers by metabolomics and machine learning technology; Nature Publishing Group; Scientific Reports; 9; 9697; 12-2019  
dc.identifier.uri
http://hdl.handle.net/11336/125719  
dc.description.abstract
Verification of food authenticity establishes consumer trust in food ingredients and components of processed food. Next to genetic or protein markers, chemicals are unique identifiers of food components. Non-targeted metabolomics is ideally suited to screen food markers when coupled to efficient data analysis. This study explored feasibility of random forest (RF) machine learning, specifically its inherent feature extraction for non-targeted metabolic marker discovery. The distinction of chia, linseed, and sesame that have gained attention as “superfoods” served as test case. Chemical fractions of non-processed seeds and of wheat cookies with seed ingredients were profiled. RF technology classified original seeds unambiguously but appeared overdesigned for material with unique secondary metabolites, like sesamol or rosmarinic acid in the Lamiaceae, chia. Most unique metabolites were diluted or lost during cookie production but RF technology classified the presence of the seed ingredients in cookies with 6.7% overall error and revealed food processing markers, like 4-hydroxybenzaldehyde for chia and succinic acid monomethylester for linseed additions. RF based feature extraction was adequate for difficult classifications but marker selection should not be without human supervision. Combination with alternative data analysis technologies is advised and further testing of a wide range of seeds and food processing methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
METABOLOMICS  
dc.subject
GCMS  
dc.subject
MACHINE LEARNING  
dc.subject
SEEDS  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Discovery of food identity markers by metabolomics and machine learning technology  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-19T21:27:05Z  
dc.identifier.eissn
2045-2322  
dc.journal.volume
9  
dc.journal.number
9697  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Erban, Alexander. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania  
dc.description.fil
Fil: Fehrle, Ines. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania  
dc.description.fil
Fil: Martinez-Seidel, Federico. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania  
dc.description.fil
Fil: Brigante, Federico Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina  
dc.description.fil
Fil: Lucini Mas, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina  
dc.description.fil
Fil: Baroni, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina  
dc.description.fil
Fil: Wunderlin, Daniel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina  
dc.description.fil
Fil: Kopka, Joachim. Max-Planck-Institute of Molecular Plant Physiology. Department of Molecular Physiology; Alemania  
dc.journal.title
Scientific Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-019-46113-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-019-46113-y