Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Machine learning for filtering out false positive grey matter atrophies in single subject voxel based morphometry: A simulation based study

Külsgaard, Hernán ClaudioIcon ; Orlando, José IgnacioIcon ; Bendersky, Mariana; Princich, Juan PabloIcon ; Manzanera, Luis S.R.; Vargas, Alberto; Kochen, Sara SilviaIcon ; Larrabide, IgnacioIcon
Fecha de publicación: 11/2020
Editorial: Elsevier Science
Revista: Journal of the Neurological Sciences
ISSN: 0022-510X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Single subject VBM (SS-VBM), has been used as an alternative tool to standard VBM for single case studies. However, it has the disadvantage of producing an excessively large number of false positive detections. In this study we propose a machine learning technique widely used for automated data classification, namely Support Vector Machine (SVM), to refine the findings produced by SS-VBM. A controlled set of experiments was conducted to evaluate the proposed approach using three-dimensional T1 MRI scans from control subjects collected from the publicly available IXI dataset. The scans were artificially atrophied at different locations and with different sizes to mimic the behavior of neurological disorders. Results empirically demonstrated that the proposed method is able to significantly reduce the amount of false positive clusters (p < 0.05), with no statistical differences in the true positive findings (p > 0.05). This evidence was observed to be consistent for different atrophied areas and sizes of atrophies. This approach could be potentially be applied to alleviate the intensive manual analysis that radiologists and clinicians have to perform to filter out miss-detections of SS-VBM, increasing its usability for image reading.
Palabras clave: GREY MATTER ATROPHIES , MACHINE LEARNING , MAGNETIC RESONANCE IMAGING , VOXEL BASED MORPHOMETRY
Ver el registro completo
 
Archivos asociados
Tamaño: 5.611Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/125473
URL: https://linkinghub.elsevier.com/retrieve/pii/S0022510X20305566
DOI: http://dx.doi.org/10.1016/j.jns.2020.117220
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Külsgaard, Hernán Claudio; Orlando, José Ignacio; Bendersky, Mariana; Princich, Juan Pablo; Manzanera, Luis S.R.; et al.; Machine learning for filtering out false positive grey matter atrophies in single subject voxel based morphometry: A simulation based study; Elsevier Science; Journal of the Neurological Sciences; 420; 11-2020; 1-20
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES