Artículo
Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data
Fecha de publicación:
04/2011
Editorial:
American Mathematical Society
Revista:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study the asymptotic behavior as time goes to infinity of the solution to a nonlocal diffusion equation with absorption modeled by a powerlike reaction -up, p > 1 and set in ℝN. We consider a bounded, nonnegative initial datum u0 that behaves like a negative power at infinity. That is, |x|αu0(x) → A > 0 as |x| → ∞ with 0 < α ≤ N. We prove that, in the supercritical case p > 1+2/α, the solution behaves asymptotically as that of the heat equation (with diffusivity a related to the nonlocal operator) with the same initial datum.
Palabras clave:
BOUNDARY VALUE PROBLEMS
,
NONLOCAL DIFFUSION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Terra, Joana; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data; American Mathematical Society; Proceedings of the American Mathematical Society; 139; 4; 4-2011; 1421-1432
Compartir
Altmétricas