Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Obtaining communities with a fitness growth process

Beiro, Mariano GastónIcon ; Busch, Jorge R.; Grynberg, Sebastian P.; Alvarez Hamelin, Jose IgnacioIcon
Fecha de publicación: 05/2013
Editorial: Elsevier Science
Revista: Physica A: Statistical Mechanics And Its Applications
ISSN: 0378-4371
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

The study of community structure became an important topic of research over the last years. But, while successfully applied in several areas, the concept lacks of a general and precise notion. Facts like the hierarchical structure and heterogeneity of complex networks make it difficult to unify the idea of community and its evaluation. The global functional known as modularity is probably the most used technique in this area. Nevertheless, its limits have been deeply studied. Local techniques as the one by Lancichinetti et al. (2009) [1] arose as an answer to the resolution limit and degeneracies that modularity has. Here we propose a unique growth process for a fitness function based on the algorithm by Lancichinetti et al. (2009) [1]. The process is local and finds a community partition that covers the whole network, updating the scale parameter dynamically. We test the quality of our results by using a set of benchmarks of both heterogeneous and homogeneous graphs. We discuss alternative measures for evaluating the community structure and, in the light of them, infer possible explanations for the better performance of local methods compared to global ones in these cases.
Palabras clave: Community Detection , Social Networks , Complex Systems
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 851.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/12533
URL: http://www.sciencedirect.com/science/article/pii/S0378437113000654
DOI: http://dx.doi.org/10.1016/j.physa.2013.01.031
Colecciones
Articulos(INTECIN)
Articulos de INST.D/TEC.Y CS.DE LA ING."HILARIO FERNANDEZ LONG"
Citación
Beiro, Mariano Gastón; Busch, Jorge R.; Grynberg, Sebastian P.; Alvarez Hamelin, Jose Ignacio; Obtaining communities with a fitness growth process; Elsevier Science; Physica A: Statistical Mechanics And Its Applications; 392; 9; 5-2013; 2278-2293
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES