Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

body2vec: 3D Point Cloud Reconstruction for Precise Anthropometry with Handheld Devices

Trujillo Jiménez, Magda AlexandraIcon ; Navarro, Pablo EugenioIcon ; Pazos, Bruno AlfredoIcon ; Morales, Arturo LeonardoIcon ; Ramallo, VirginiaIcon ; Paschetta, Carolina AndreaIcon ; de Azevedo, SoledadIcon ; Ruderman, AnahíIcon ; Perez, Luis OrlandoIcon ; Delrieux, Claudio AugustoIcon ; Gonzalez-Jose, RolandoIcon
Fecha de publicación: 09/2020
Editorial: MDPI
Revista: Journal of Imaging
e-ISSN: 2313-433X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Current point cloud extraction methods based on photogrammetry generate large amounts of spurious detections that hamper useful 3D mesh reconstructions or, even worse, the possibility of adequate measurements. Moreover, noise removal methods for point clouds are complex, slow and incapable to cope with semantic noise. In this work, we present body2vec, a model-based body segmentation tool that uses a specifically trained Neural Network architecture. Body2vec is capable to perform human body point cloud reconstruction from videos taken on hand-held devices (smartphones or tablets), achieving high quality anthropometric measurements. The main contribution of the proposed workflow is to perform a background removal step, thus avoiding the spurious points generation that is usual in photogrammetric reconstruction. A group of 60 persons were taped with a smartphone, and the corresponding point clouds were obtained automatically with standard photogrammetric methods. We used as a 3D silver standard the clean meshes obtained at the same time with LiDAR sensors post-processed and noise-filtered by expert anthropological biologists. Finally, we used as gold standard anthropometric measurements of the waist and hip of the same people, taken by expert anthropometrists. Applying our method to the raw videos significantly enhanced the quality of the results of the point cloud as compared with the LiDAR-based mesh, and of the anthropometric measurements as compared with the actual hip and waist perimeter measured by the anthropometrists. In both contexts, the resulting quality of body2vec is equivalent to the LiDAR reconstruction.
Palabras clave: DEEP LEARNING , NEURAL NETWORKS , STRUCTURE FROM MOTION , 3D POINT CLOUD , ANTHROPOMETRY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.043Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/125297
DOI: http://dx.doi.org/10.3390/jimaging6090094
URL: https://www.mdpi.com/2313-433X/6/9/94
Colecciones
Articulos(IPCSH)
Articulos de INSTITUTO PATAGONICO DE CIENCIAS SOCIALES Y HUMANAS
Citación
Trujillo Jiménez, Magda Alexandra; Navarro, Pablo Eugenio; Pazos, Bruno Alfredo; Morales, Arturo Leonardo; Ramallo, Virginia; et al.; body2vec: 3D Point Cloud Reconstruction for Precise Anthropometry with Handheld Devices; MDPI; Journal of Imaging; 6; 9; 9-2020; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES