Artículo
Estimation of fracture compliance from attenuation and velocity analysis of full-waveform sonic log data
Barbosa, Nicolás D.; Caspari, Eva; Rubino, Jorge German
; Greenwood, Andrew; Baron, Ludovic; Holliger, Klaus
Fecha de publicación:
19/02/2019
Editorial:
Blackwell Publishing
Revista:
Journal of Geophysical Research: Solid Earth
ISSN:
2169-9313
e-ISSN:
2169-9356
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In fractured rocks, the amplitudes of propagating seismic waves decay due to various mechanisms, such as geometrical spreading, solid friction, displacement of pore fluid relative to the solid frame, and transmission losses due to energy conversion to reflected and transmitted waves at the fracture interfaces. In this work, we characterize the mechanical properties of individual fractures from P wave velocity changes and transmission losses inferred from static full‐waveform sonic log data. The methodology is validated using synthetic full‐waveform sonic logs and applied to data acquired in a borehole penetrating multiple fractures embedded in a granodioritic rock. To extract the transmission losses from attenuation estimates, we remove the contributions associated with other loss mechanisms. The geometrical spreading correction is inferred from a joint analysis of numerical simulations that emulate the borehole environment and the redundancy of attenuation contributions other than geometrical spreading in multiple acquisitions with different source‐receiver spacing configurations. The intrinsic background attenuation is estimated from measurements acquired in the intact zones. In the fractured zones, the variations with respect to the background attenuation are attributed to transmission losses. Once we have estimated the transmission losses associated with a given fracture, we compute the transmission coefficient, which, on the basis of the linear slip theory, can then be related to the mechanical normal compliance of the fracture. Our results indicate that the estimated mechanical normal compliance ranges from 1 × 10−13 to 1 × 10−12 m/Pa, which, for the size of the considered fractures, is consistent with the experimental evidence available.
Palabras clave:
SEISMIC WAVES
,
BOREHOLE DATA
,
FRACTURES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Barbosa, Nicolás D.; Caspari, Eva; Rubino, Jorge German; Greenwood, Andrew; Baron, Ludovic; et al.; Estimation of fracture compliance from attenuation and velocity analysis of full-waveform sonic log data; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 124; 3; 19-2-2019; 2738-2761
Compartir
Altmétricas