Mostrar el registro sencillo del ítem

dc.contributor.author
Riley Casper, W.  
dc.contributor.author
Grünbaum, Francisco Alberto  
dc.contributor.author
Yakimov, Milen  
dc.contributor.author
Zurrián, Ignacio Nahuel  
dc.date.available
2021-02-08T13:02:28Z  
dc.date.issued
2019-09-10  
dc.identifier.citation
Riley Casper, W.; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel; Reflective prolate-spheroidal operators and the KP/KdV equations; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 116; 37; 10-9-2019; 18310-18315  
dc.identifier.issn
0027-8424  
dc.identifier.uri
http://hdl.handle.net/11336/125068  
dc.description.abstract
Commuting integral and differential operators connect the topics of signal processing, random matrix theory, and integrable systems. Previously, the construction of such pairs was based on direct calculation and concerned concrete special cases, leaving behind important families such as the operators associated to the rational solutions of the Korteweg-de Vries (KdV) equation. We prove a general theorem that the integral operator associated to every wave function in the infinite-dimensional adelic Grassmannian Grad of Wilson always reflects a differential operator (in the sense of Definition 1 below). This intrinsic property is shown to follow from the symmetries of Grassmannians of Kadomtsev-Petviashvili (KP) wave functions, where the direct commutativity property holds for operators associated to wave functions fixed by Wilson's sign involution but is violated in general. Based on this result, we prove a second main theorem that the integral operators in the computation of the singular values of the truncated generalized Laplace transforms associated to all bispectral wave functions of rank 1 reflect a differential operator. A 90◦ rotation argument is used to prove a third main theorem that the integral operators in the computation of the singular values of the truncated generalized Fourier transforms associated to all such KP wave functions commute with a differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, including as special cases the integral operators associated to all rational solutions of the KdV and KP hierarchies considered by [Airault, McKean, and Moser, Commun. Pure Appl. Math. 30, 95-148 (1977)] and [Krichever, Funkcional. Anal. i Priložen. 12, 76-78 (1978)], respectively, in the late 1970s. Many examples are presented.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
National Academy of Sciences  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PROLATE-SPHEROIDAL INTEGRAL OPERATORS  
dc.subject
RATIONAL SOLUTIONS OF THE KDV AND KP EQUATIONS  
dc.subject
REFLECTIVITY  
dc.subject
WILSON'S ADELIC GRASSMANNIAN  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Reflective prolate-spheroidal operators and the KP/KdV equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-19T21:17:31Z  
dc.identifier.eissn
1091-6490  
dc.journal.volume
116  
dc.journal.number
37  
dc.journal.pagination
18310-18315  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Riley Casper, W.. State University of Louisiana; Estados Unidos  
dc.description.fil
Fil: Grünbaum, Francisco Alberto. University of California at Berkeley; Estados Unidos  
dc.description.fil
Fil: Yakimov, Milen. State University of Louisiana; Estados Unidos  
dc.description.fil
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.journal.title
Proceedings of the National Academy of Sciences of The United States of America  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.pnas.org/lookup/doi/10.1073/pnas.1906098116  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1073/pnas.1906098116