Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index

Holzman, Mauro EzequielIcon ; Rivas, Raúl Eduardo; Piccolo, Maria CintiaIcon
Fecha de publicación: 05/2014
Editorial: Elsevier Science
Revista: Itc Journal
ISSN: 0303-2434
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos

Resumen

Soil moisture availability affects rainfed crop yield. Therefore, the development of methods for pre-harvest yield prediction is essential for the food security. A study was carried out to estimate regional crop yield using the Temperature Vegetation Dryness Index (TVDI). Triangular scatters from land surface temperature (LST) and enhanced vegetation index (EVI) space from MODIS (Moderate Resolution Imaging Spectroradiometer) were utilized to obtain TVDI and to estimate soil moisture availability. Then soybean and wheat crops yield was estimated on four agro-climatic zones of Argentine Pampas. TVDI showed a strong correlation with soil moisture measurements, with R2 values ranged from 0.61 to 0.83 and also it was in agreement with spatial pattern of soil moisture. Moreover, results showed that TVDI data can be used effectively to predict crop yield on the Argentine Pampas. Depending on the agro-climatic zone, R2 values ranged from 0.68 to 0.79 for soybean crop and 0.76 to 0.81 for wheat. The RMSE values were 366 and 380 kg ha-1 for soybean and they varied between 300 and 550 kg ha-1 in the case of wheat crop. When expressed as percentages of actual yield, the RMSE values ranged from 12 to 13% for soybean and 14 to 22% for wheat. The bias values indicated that the obtained models underestimated soybean and wheat yield. Accurate crop grain yield forecast using the developed regression models was achieved one to three months before harvest. In many cases the results were better than others obtained using only a vegetation index, showing the aptitude of surface temperature and vegetation index combination to reflect the crop water condition. Finally, the analysis of a wide range of soil moisture availability allowed us to develop a generalized model of crop yield and dryness index relationship which could be applicable in other regions and crops at regional scale.
Palabras clave: Soil Moisture , Modis , Optical Thermal , Crop Yield Forecasting , Remote Sensing
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.137Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/12503
URL: http://www.sciencedirect.com/science/article/pii/S0303243413001748
URL: http://dx.doi.org/10.1016/j.jag.2013.12.006
Colecciones
Articulos(IADO)
Articulos de INST.ARG.DE OCEANOGRAFIA (I)
Citación
Holzman, Mauro Ezequiel; Rivas, Raúl Eduardo; Piccolo, Maria Cintia; Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index; Elsevier Science; Itc Journal; 28; 5-2014; 181-192
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES