Mostrar el registro sencillo del ítem
dc.contributor.author
Guozden, Tomas Manuel

dc.contributor.author
Jagla, Eduardo Alberto

dc.contributor.author
Marder, M.
dc.date.available
2021-02-05T19:40:43Z
dc.date.issued
2010-03
dc.identifier.citation
Guozden, Tomas Manuel; Jagla, Eduardo Alberto; Marder, M.; Supersonic cracks in lattice models; Springer; International Journal Of Fracture; 162; 1-2; 3-2010; 107-125
dc.identifier.issn
0376-9429
dc.identifier.uri
http://hdl.handle.net/11336/125008
dc.description.abstract
We have studied cracks traveling along weak interfaces. We model them using harmonic and anharmonic forces between particles in a lattice, both in tension (Mode I) and antiplane shear (Mode III). One of our main objects has been to determine when supersonic cracks traveling faster than the shear wave speed can occur. In contrast to subsonic cracks, the speed of supersonic cracks is best expressed as a function of strain, not stress intensity factor. Nevertheless, we find that supersonic cracks are more common than has previously been realized. They occur both in Mode I and Mode III, with or without anharmonic changes of interparticle forces prior to breaking, and with or without dissipation. The extent and shape of the supersonic branch of solutions depends strongly on details such as lattice geometry, force law anharmonicity, and amount of dissipation. Particle forces that stiffen prior to breaking lead to larger supersonic branches. Increasing dissipation also tends to promote the existence of supersonic states. We include a number of other results, including analytical expressions for crack speeds in the high-strain limit, and numerical results for the spatial extent of regions where particles interact anharmonically. Finally, we note a curious phenomenon, where for forces that weaken with increasing strain, cracks can slow down when one pulls on them harder. © 2009 Springer Science+Business Media B.V.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRITTLE FRACTURE
dc.subject
CRACKS
dc.subject
EXACT SOLUTIONS
dc.subject
LATTICE MODELS
dc.subject
MOLECULAR DYNAMICS
dc.subject
SUPERSONIC
dc.subject
WIENER-HOPF
dc.subject.classification
Física de los Materiales Condensados

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Supersonic cracks in lattice models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-01-27T19:17:43Z
dc.journal.volume
162
dc.journal.number
1-2
dc.journal.pagination
107-125
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Guozden, Tomas Manuel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
dc.description.fil
Fil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
dc.description.fil
Fil: Marder, M.. University of Texas at Austin; Estados Unidos
dc.journal.title
International Journal Of Fracture

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10704-009-9426-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10704-009-9426-4
Archivos asociados