Mostrar el registro sencillo del ítem

dc.contributor.author
Guozden, Tomas Manuel  
dc.contributor.author
Jagla, Eduardo Alberto  
dc.contributor.author
Marder, M.  
dc.date.available
2021-02-05T19:40:43Z  
dc.date.issued
2010-03  
dc.identifier.citation
Guozden, Tomas Manuel; Jagla, Eduardo Alberto; Marder, M.; Supersonic cracks in lattice models; Springer; International Journal Of Fracture; 162; 1-2; 3-2010; 107-125  
dc.identifier.issn
0376-9429  
dc.identifier.uri
http://hdl.handle.net/11336/125008  
dc.description.abstract
We have studied cracks traveling along weak interfaces. We model them using harmonic and anharmonic forces between particles in a lattice, both in tension (Mode I) and antiplane shear (Mode III). One of our main objects has been to determine when supersonic cracks traveling faster than the shear wave speed can occur. In contrast to subsonic cracks, the speed of supersonic cracks is best expressed as a function of strain, not stress intensity factor. Nevertheless, we find that supersonic cracks are more common than has previously been realized. They occur both in Mode I and Mode III, with or without anharmonic changes of interparticle forces prior to breaking, and with or without dissipation. The extent and shape of the supersonic branch of solutions depends strongly on details such as lattice geometry, force law anharmonicity, and amount of dissipation. Particle forces that stiffen prior to breaking lead to larger supersonic branches. Increasing dissipation also tends to promote the existence of supersonic states. We include a number of other results, including analytical expressions for crack speeds in the high-strain limit, and numerical results for the spatial extent of regions where particles interact anharmonically. Finally, we note a curious phenomenon, where for forces that weaken with increasing strain, cracks can slow down when one pulls on them harder. © 2009 Springer Science+Business Media B.V.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BRITTLE FRACTURE  
dc.subject
CRACKS  
dc.subject
EXACT SOLUTIONS  
dc.subject
LATTICE MODELS  
dc.subject
MOLECULAR DYNAMICS  
dc.subject
SUPERSONIC  
dc.subject
WIENER-HOPF  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Supersonic cracks in lattice models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-01-27T19:17:43Z  
dc.journal.volume
162  
dc.journal.number
1-2  
dc.journal.pagination
107-125  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Guozden, Tomas Manuel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Marder, M.. University of Texas at Austin; Estados Unidos  
dc.journal.title
International Journal Of Fracture  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10704-009-9426-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10704-009-9426-4