Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Random evolution in population dynamics

Caceres Garcia Faure, Manuel OsvaldoIcon
Fecha de publicación: 01/2010
Editorial: World Scientific
Revista: International Journal Of Bifurcation And Chaos
ISSN: 0218-1274
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

We present a perturbative formalism to deal with linear random positive maps. We generalize the biological concept of the population growth rate when a Leslie matrix has random elements (i.e. characterizing the macroscopic disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean-value population vector state, is presented as the effective growth rate of a random Leslie model. The problem was reduced to the calculation of the smallest positive root z̃1 of the secular polynomial appearing in the general expression for the mean-value Green function 〈G(z)〉. This nontrivial polynomial can be obtained order by order in terms of a diagrammatic technique built with Terwiel's cumulants, which have carefully been identified in the present work. By understanding how this smallest positive root z̃1 = 1/λ̃1 depends on the model of disorder, one can link the asymptotic population dynamics with the statistical properties of the errors (mutations) in the vital parameters. This eigenvalue has the meaning of an effective PerronFrobenious eigenvalue for a random positive matrix. Analytical (exact and perturbative calculations) results are presented for several models of disorder.
Palabras clave: EFFECTIVE LYAPUNOV EXPONENT , LESLIE MATRICES , PERRON-FROBENIUS , POPULATION DYNAMICS , RANDOM LINEAR MAPS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 225.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/125000
URL: https://www.worldscientific.com/doi/abs/10.1142/S0218127410025740
DOI: http://dx.doi.org/10.1142/S0218127410025740
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Caceres Garcia Faure, Manuel Osvaldo; Random evolution in population dynamics; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 1-2010; 297-307
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES