Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Labelled packing functions in graphs

Hinrichsen, Erica Gretel; Leoni, Valeria AlejandraIcon ; Safe, Martin DarioIcon
Fecha de publicación: 02/2020
Editorial: Elsevier Science
Revista: Information Processing Letters
ISSN: 0020-0190
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

Given a positive integer k and a graph G, a k-limited packing in G is a subset B of its vertex set such that each closed vertex neighborhood of G has at most k vertices of B (Gallant et al., 2010). A first generalization of this concept deals with a subset of vertices that cannot be in the set B and also, the number k is not a constant but it depends on the vertex neighborhood (Dobson et al., 2010). As another variation, a {k}-packing function f of G assigns a non-negative integer to the vertices of G in such a way that the sum of the values of f over each closed vertex neighborhood is at most k (Hinrichsen et al., 2014). The three associated decision problems are NP-complete in the general case. We introduce L-packing functions as a unified notion that generalizes all limited packing concepts introduced up to now. We present a linear time algorithm that solves the problem of finding the maximum weight of an L-packing function in strongly chordal graphs when a strong elimination ordering is given that includes the linear algorithm for {k}-packing functions in strongly chordal graphs (2014). Besides, we show how the algorithm can be used to solve the known clique-independence problem on strongly chordal graphs in linear time (G. Chang et al., 1993).
Palabras clave: CLIQUE-INDEPENDENCE , COMPUTATIONAL COMPLEXITY , LABELLED PACKING PROBLEM , LINEAR TIME ALGORITHM , STRONGLY CHORDAL GRAPH
Ver el registro completo
 
Archivos asociados
Tamaño: 317.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/124999
URL: https://linkinghub.elsevier.com/retrieve/pii/S0020019019301462
DOI: http://dx.doi.org/10.1016/j.ipl.2019.105863
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Hinrichsen, Erica Gretel; Leoni, Valeria Alejandra; Safe, Martin Dario; Labelled packing functions in graphs; Elsevier Science; Information Processing Letters; 154; 105863; 2-2020; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES